ИЗУЧЕНИЕ СИСТЕМЫ Ca(NO₃)₂ – (NH₄)₂HPO₄ – NH₄OH – H₂O И КРИСТАЛЛИЗУЮЩЕЙСЯ МИНЕРАЛЬНОЙ ФАЗЫ

М. В. Фильченко 1 , А. П. Солоненко 1 , Н. Н. Леонова 2 , К. С. Буяльская 2 , Г. Г. Савельева 2 , О. А. Голованова 1

Минеральные образования встречаются в природе повсеместно. Так, в организме человека костная ткань представляет собой уникальный по составу и свойствам минерально-органический композиционный материал на основе карбонатсодержащего нестехиометрического гидроксилапатита $Ca_{10-x-y/2}(HPO_4)_2(CO_3)_y(PO_4)_{6-x-y}(OH)_{2-x}$ и белка коллагена. С целью имитирования комплексной иерархической структуры костей и зубов проводятся исследования наноструктурированных и нанокристаллических материалов на основе веществ, изначально близких по химическому и фазовому составу к костной ткани, — ортофосфатов кальция. Поэтому эти соединения являются предметом интенсивных исследований в настоящее время.

Условия эксперимента. В условиях *in vitro* была получена серия образцов ортофосфатов кальция различной стехиометрии путем осаждения малорастворимого соединения из системы $Ca(NO_3)_2 - (NH_4)_2HPO_4 - NH_4OH - H_2O$ (Ca/P = 1.70) при варьировании pH в интервале от 5.50 до 13.00 (\pm 0.05).

Цель исследования – определение зависимости природы, кристаллических характеристик и дисперсности осаждаемой фазы от условий осаждения (рН осаждения).

Результаты определения состава жидкости, отделенной от осадка после 48 часов кристаллизации, свидетельствуют о том, что при росте исходного значения рН среды происходит повышение скорости протекания реакции осаждения, увеличивается масса осадка, содержание в нем кальция и фосфора, наблюдается рост соотношения Ca/P в осадке от Ca/P = 1.00, характерного для брушита (при рН = 5.50), до максимальной в данных условиях величины Ca/P = 1.70 при рН = 13.0, что указывает на формирование в последнем случае гидроксилапатита с избытком кальция. Твердая фаза с молярным соотношением Ca/P = 1.67, характерным для стехиометрического гидроксилапатита, получена при рН = 12.0.

Анализ осадка, полученного осаждением при рH = 5.50, методом РФА показал, что в данных условиях кристаллизуется брушит (рис. 1). При увеличении щелочности среды начинается осаждение более устойчивой и менее растворимой фазы гидроксилапатита. Так, на дифрактограммах твердых фаз (рис. 1), полученных из систем с исходным значением рH = 6.00–8.00, присутствуют пики как брушита, так и гидроксилапатита, что указывает на совместную кристаллизацию в данных условиях двух фосфатов кальция с различной стехиометрией. В условиях, когда рH > 8.00, кристаллизуется только гидроксилапатит, степень кристалличности которого (охарактеризованная качественно по разрешению пиков в области 30–35° 20) увеличивается по мере роста рН среды.

Согласно данным анализа дисперсного состава синтетических порошков, для образца (брушита), полученного осаждением при рH = 5.50, кривая распределения частиц по размерам бимодальна, что свидетельствует об образовании в исследуемых условиях кристаллов двух фракций ($r_{max1} = 8.3$ мкм, $r_{max1} = 48.8$ мкм). Для всех остальных твердых фаз характерно мономодальное распределение частиц по размерам, при этом значение их среднего диаметра колеблется в интервале от 60 до 130 мкм (рис. 2). В таблице приведены

¹ – Омский государственный университет им. Ф. М. Достоевского, г. Омск, filchenkomarija@rambler.ru

² – Учреждение Российской академии наук Институт проблем переработки углеводородов Сибирского отделения РАН, г. Омск

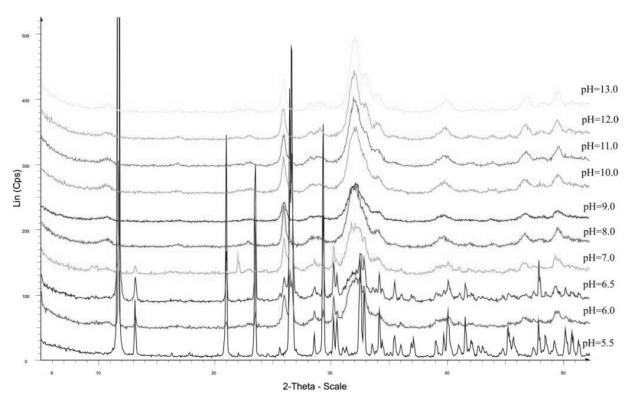


Рис. 1. Дифрактограммы образцов, полученных осаждением при варьировании pH системы $Ca(NO_3)_2 - (NH_4)_2HPO_4 - NH_4OH - H_2O$ (Ca/P = 1.70).

размеры кристаллитов для образцов, представленных только фазой апатита, рассчитанные по дифрактограммам с помощью формулы Селякова-Шеррера. Как видно из данных таблицы, отдельные кристаллиты имеют нанометровые размеры. Большие диаметры частиц, определенные в ходе дисперсионного анализа, свидетельствуют об агрегации отдельных кристаллических образований в структуры более высокого порядка с развитой поверхностью (в том числе, вероятно, и за счет внутренних пор и каналов) ($S_{vд}$, табл.).

Таблица Характеристики твердых фаз, полученных при варьировании рН осаждения

Исходное значение рН среды	Ca ²⁺ /PO ₄ ³⁻ в осадке	S _{уд.} , м²/г	a, Å	c, Å	Размер кристал- литов, Å	Фазовый состав образца
5.50 ± 0.05	~1.00	4±1	_	_	_	Брушит, монетит
6.00 ± 0.05	1.26	39±2	_	_	_	Брушит, моне-
6.50 ± 0.05	1.34	76±4	_	_	_	тит, гидроксила-
7.00 ± 0.05	1.40	73±4	_	_	-	патит
8.00 ± 0.05	1.46	75±4	9.446±0.004	6.867±0.003	~110	Брушит (~5 %), гидроксилапатит (~95 %)
9.00 ± 0.05	1.51	105±5	9.422±0.003	6.868±0.003	~80	
10.00 ± 0.05	1.56	107±5	9.410±0.003	6.866±0.003	~100	Гидроксилапатит (100 %)
11.00 ± 0.05	1.65	120±6	9.708±0.003	6.878±0.003	~110	
12.00 ± 0.05	1.67	130±7	9.406±0.003	6.884±0.002	~130	
13.00 ± 0.05	1.70	130±7	9.395±0.002	6.892±0.002	~130	

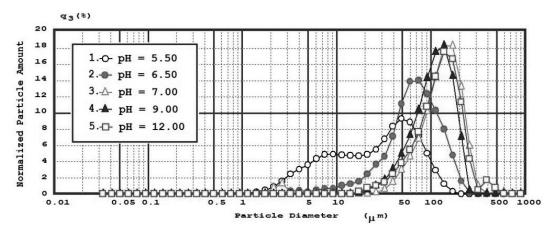


Рис. 2. Распределение частиц синтетических фосфатов кальция по размерам.

Установлено, что все тестовые образцы ортофосфатов кальция имеют схожие кривые растворения, различающиеся значениями максимального pH, которое достигается за время эксперимента, а также скоростью перехода вещества в раствор (рис. 3).

Анализ кинетических кривых показал, что растворение синтетических твердых образцов – многостадийный процесс. На начальной стадии растворения (до 10 минут) зависимость рН и концентрации кальция в растворе от времени ($C(\tau)$) можно аппроксимировать логарифмической или степенной функцией. С течением времени растворение замедляется, и кинетика подчиняется экспоненциальной зависимости. Экспоненциальная зависимость соответствует кинетике реакции первого порядка, когда скорость изменения количества «активных центров растворения» ($C(\tau)$) в растворяемом материале пропорциональна их количеству в данный момент: $\frac{dC(t)}{dt} = -kC(t)$, где k не

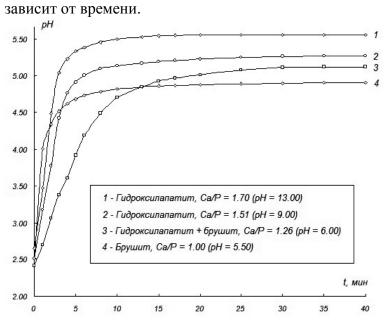


Рис. 3. Кинетические кривые растворения образцов.

Наибольшей скоростью растворения характеризуется брушит. Далее, для смесей брушит – апатит и гидроксилапатита, с увеличением соотношения Са/Р в образце скорость растворения возрастает (об этом свидетельствует меньшее время, за которое происходит наибольшее изменение $pH_{\text{кон}}$, рис. 3). Близким значением скорости растворения к данной величине для брушита характеризуется образец основного фосфата кальция, для которого Са/Р = 1.70. При этом, отмечен эффект замедленного растворения образцов, представлен-

ных смесью брушита и апатита (рис. 3, кривая 3). Методом ИК-Фурье спектроскопии установлено, что в образцах, состоящих из смеси $CaHPO_4 \cdot 2H_2O$ и $Ca_{10-x}(HPO_4)_x(PO_4)_6_x(OH)_{2-x}$, после растворения не содержится брушит (на ИК-спектрах отсутствуют полосы поглощения данного фосфата кальция, рис. 4). Известно также, что частицы с меньшими размерами растворяются быстрее по сравнению с более крупными кристаллами

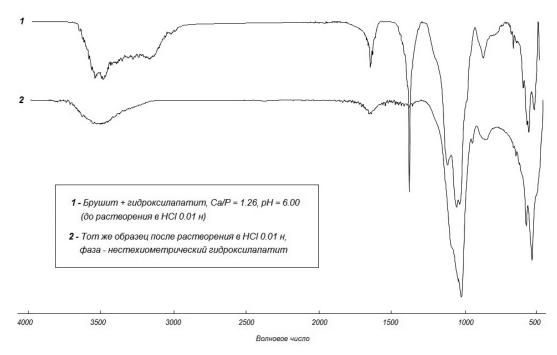


Рис. 4. ИК-спектры образцов до и после растворения в НСІ.

того же состава. Установленные закономерности растворения образцов фосфатов кальция хорошо согласуются с данными дисперсионного анализа и S_{yz} .

Таким образом, в ходе проведенного исследования установлено, что в интервале pH = 5.50-8.00 происходит изменение фазового состава образцов: $CaHPO_4 \cdot 2H_2O \rightarrow Ca_{10-x}(HPO_4)_x(PO_4)_{6-x} \cdot nH_2O \rightarrow Ca_{10}(PO_4)_6(OH)_2$. Варьирование pH кристаллизационной среды позволяет методом осаждения получать гидроксилапатит с различным характером и степенью отклонения от стехиометрии, а также кристаллы брушита или смесь кислого и основного фосфатов кальция с разной морфологией, размерами, величиной удельной поверхности, а также скоростью растворения.

HИР выполнена в рамках реализации Φ ЦП «Научные и научно-педагогические кадры инновационной России» на 2009–2013 годы (ГК № 14.740.11.0548-0723).