КОЛЕБАТЕЛЬНАЯ СПЕКТРОСКОПИЯ МИНЕРАЛА КОЗНАРИТА И ЕГО РЕДКОЗЕМЕЛЬНЫХ АНАЛОГОВ

Е. Ю. Боровикова 1 , Д. М. Быков 2

1 – Московский государственный университет им. М. В. Ломоносова, г. Москва, атигт@mail.ru

Среди природных минералов известны всего три циркониевых фосфата с щелочноземельным катионом: кознарит, гайнесит и Cs аналог последнего. Кознарит KZr₂(PO₄)₃ – продукт поздней стадии гидротермальных изменений гранитных пегматитов. На данный момент известно всего три проявления кознарита в мире. [Brownfield, 1993]. В то же самое время, синтетический натриевый аналог этого минерала NaZ₂(PO₄)₃ (насикон, NZP) хорошо известен благодаря тому, что соединения, кристаллизующиеся в данном структурном типе обладают широким спектром функциональных характеристик: устойчивостью, химической радиационной термической, И малым расширением, низкой теплопроводностью, хорошей ионной проводимостью и т.д., а также могут быть использованы для отверждения ядерных отходов разных составов и Данное исследование посвящено изучению процессов сложности. упорядочения в структурах природного минерала и его редкоземельных аналогов с общей формулой $M^{II}_{0.33}T_2(PO_4)_3$, где $M^{III}-Y$, La - Lu; T- Zr, Hf с помощью методов колебательной спектроскопии. Также был изучен ряд твердых растворов La_{0.33}Zr₂(PO₄)₃ – $Yb_{0.33}Zr_{2}(PO_{4})_{3}$.

ИК-спектры были получены на вакуумном спектрометре IFS125HR (Брукер), спектры комбинационного рассеяния — на Фурье-спектрометре Vertex 70? снабженном модулем RAMII FT с Ge детектором (Брукер).

Структура кознарита и насикона (пространственная группа R3c, Z=6) [Brownfield et al., 1993; Hong, 1972] представляет собой каркас объединенных общими вершинами октаэдров ZrO_6 и тетраэдров PO_4 . Основу смешенного каркаса составляет фрагмент $[Zr_2(PO_4)_3]^-$, образованный двумя октаэдрами ZrO_6 , связанными тремя мостиковыми тетраэдрами PO_4 . Эти структурообразующие фрагменты формируют колонки, вытянутые вдоль оси $\overline{3}$. Между октаэдрами Zr в колонках располагаются позиции M1 (6b), обладающие искаженной октаэдрической координацией. Они полностью заняты атомами щелочных элементов (рис. 1a).

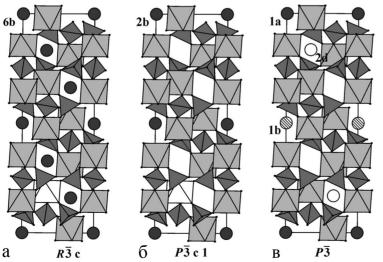


Рис. 1. Характер упорядочения щелочных и редкоземельных катионов в стуктурах: а — кознарита (R3c), б — $M_{0,33}^{II}Zr_2(PO_4)_3$, где $M_{0,33}^{II}Zr_2(PO_4)_3$ (P3).

а кзе о гзет в гз Уточнение структур редкоземельных фаз $M^{III}_{0.33}Zr_2(PO_4)_3$ ($M^{III}=Ce,Eu,Yb$) методом Ритвельда привело к

² – Нижегородский государственный университет им. Н. И. Лобачевского, г. Нижний Новгород, denis.bykov@inbox.ru

пространственной группе этих соединений $P\overline{3}c$ [Bykov et al., 2006]. Атомы лантаноидов упорядочиваются в позициях 2b (0 0 0), R-трансляция исчезает (рис. 1, б).

Структура $La_{0,33}Zr_2(PO_4)_3$ была решена в пространственной группе $P\overline{3}$ [Barre et al., 2005]. Атомы La полностью занимают позиции 1a (0 0 0), 0.82 позиций 1b (0 0 1/2), остающиеся 0.18 атомов La частично занимают 2d позиции (1/3 2/3 0.667) (рис. 1, в).

Фактор-групповой анализ внутренних колебаний PO_4^{3-} иона приведен в таблице 1. В структурах кознарита и насикона (пр. гр. $R\overline{3c}$, фактор-группа D_{3d}) атомы фосфора занимают позицию на оси второго порядка (позиционная симметрия C_2). В структуре циркониевых фосфатов с редкими землями с пр.гр. $P\overline{3}$ c1 (фактор-группа также D_{3d}) атомы фосфора занимают две позиции с различной симметрией. Часть атомов фосфора, так же как в предыдущем случае, занимает позиции с симметрией C_2 . Таким образом, для внутренних колебаний этих ионов фактор-групповой анализ будет таким же, как и для кознарита с пр. гр. $R\overline{3}$ c. Другая часть атомов фосфора находится в общем положении (симметрия C_1). В структуре $La_{0.33}Zr_2(PO_4)_3$ (пр. гр. $P\overline{3}$, фактор-группа C_{3i}) атомы фосфора занимают 3 позиции с симметрией C_1 (1). Все колебания, разрешенные правилами отбора, приведенные в таблице 1, утраиваются.

Таблица 1 Фактор-групповой анализ внутренних колебаний тетраэдрических ионов ${
m PO}_4^{3-}$ в структурах различных циркониевых фосфатов

Колебания PO ₄ ³⁻	Точечная группа симметрии T_d	Позиционная симметрия C_1	Фактор-группа C_{3i}
ν_1	A_1	A	$A_g + E_g + A_u + E_u$
ν_2	E	2 A	$2A_{g} + 2E_{g} + 2A_{u} + 2E_{u}$
v_3, v_4	F_2	3 <i>A</i>	$3A_g + 3E_g + 3A_u + 3E_u$
	Точечная группа симметрии T_d	Позиционная симметрия C_1	Фактор-группа D_{3d}
ν_1	A_1	A	$A_{1g} + A_{2g} + 2E_g + A_{1u} + A_{2u} + 2E_u$
v_2	E	2A	$2A_{1g} + 2A_{2g} + 4E_g + 2A_{1u} + 2A_{2u} + 4E_u$
v_3, v_4	F_2	3A	$3A_{1g} + 3A_{2g} + 6E_g + 3A_{1u} + 3A_{2u} + 6E_u$
	Точечная группа симметрии T_d	Позиционная симметрия C_2	Фактор-группа D_{3d}
ν_1	A_1	A	$A_{1g} + E_g + A_{1u} + E_u$
v_2	E	2 <i>A</i>	$2A_{1g} + 2E_g + 2A_{1u} + 2E_u$
v_3, v_4	F_2	A + 2B	$A_{1g} + 2A_{2g} + 3E_g + A_{1u} + 2A_{2u} + 3E_u$

Примечание: в таблице жирным шрифтом показаны активные колебания.

Также нами проведен анализ внешних колебаний, включающий трансляции катионов, PO_4^{3-} ионов и вращения PO_4^{3-} ионов. Сравнение спектров Zr и Hf образцов соответствующих составов позволило выявить полосы проявляющие масс-эффект, т.е. отвечающие колебаниям M^{IV} катионов в области $350–270~{\rm cm}^{-1}$.

На рис. 2 приведены ИК-спектры кознарита (2.1) и циркониевых фосфатов празеодима (2.2) и лантана (2.3). Из 5 разрешенных правилами отбора полос v_3 колебаний в спектре кознарита реализуется две полосы с максимумами 1070 и 1030 см⁻¹ и высокочастотная слабая полоса ~ 1190 см⁻¹ (рис. 2.1). Плечо 970 см⁻¹ отвечает v_1 колебанию, четыре полосы в области 640–540 см⁻¹ – v_4 колебаниям.

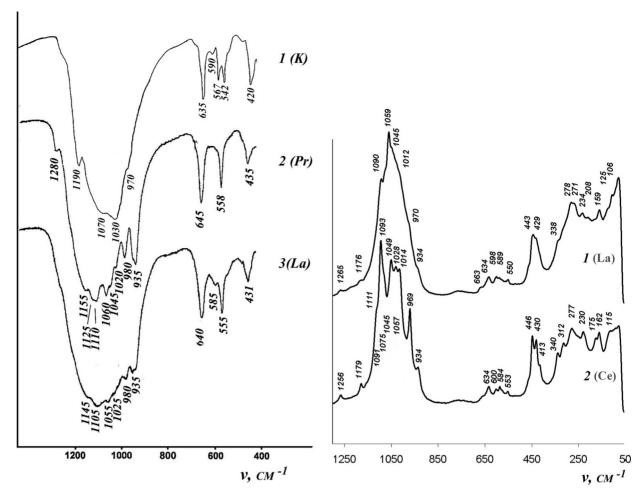


Рис. 2. Инфракрасные спектры: 1- кознарита $KZ_2(PO_4)_3,\ 2-Pr_{0,33}Zr_2(PO_4)_3,\ 3-La_{0,33}Zr_2(PO_4)_3.$

Рис. 3. Спектры комбинационного рассеяния: $1-La_{0.33}Zr_2(PO_4)_3,\ 2-Ce_{0.33}Zr_2(PO_4)_3.$

При двух независимых позициях фосфора в спектрах редкоземельных фосфатов с пр.гр. P 3c1 число полос валентных асимметричных (v_3) колебаний должно возрасти до 14, а валентных симметричных колебаний (v_1) до 3. В ИК-спектрах проявляется восемь полос v_3 колебаний в области 1280-1020 см⁻¹ и две-три полосы v_1 колебаний ~ 980 , 935-920 см⁻¹.

В спектрах комбинационного рассеяния при переходе $R3c \to P\overline{3}c1$ также наблюдается значительное усложнение спектра, подтверждаемое фактор-групповым анализом.

Несмотря на схожесть спектров фаз $M_{0.33}^{III}$ $Zr_2(PO_4)_3$ где $M^{III} = Ce-Yb$ (пр. гр. $P\overline{3}c1$) и $La_{0.33}Zr_2(PO_4)_3$ (sp.gr. $P\overline{3}$), они имеют некоторые отличия, которые особенно хорошо проявляются в КР спектрах в областях валентных и симметричных деформационных v_2 колебаний (рис. 3). Как ИК, так и КР-спектры La фазы отличаются гораздо меньшей четкостью полос по сравнению со спектрами остальных редкоземельных фосфатов.

Исследование твердых растворов в системе $La_{0.33}Zr_2(PO_4)_3$ – $Yb_{0,33}Zr_2(PO_4)_3$ показало, что большая часть их кристаллизуется в пространственной группе $P\overline{3}$, характерной для конечного лантанового члена этой серии. Морфотропный переход $P\overline{3} \to P\overline{3}\,c$ происходит вблизи состава $La_{1/18}Yb_{5/18}Zr_2(PO_4)_3$. В настоящее время проводится изучение ионной проводимости в фосфатах этой серии. Можно ожидать, что максимальное значение ионной проводимости будет наблюдаться вблизи состава $La_{1/18}Yb_{5/18}Zr_2(PO_4)_3$, точки морфотропного перехода.

Barre M., Crosnier-Lopez M. P., Le Berre F., et al. La^{3+} Diffusion in the NASICON-Type Compound $La_{1/3}Zr_2(PO_4)_3$: X-ray Thermodiffraction, ^{31}P NMR, and Ionic Conductivity Investigations // Chem. Mater. 2005. V. 17. P. 6605.

Brownfield M. E., Foord E. E., Sutley S. J., Botinelly T. Kosnarite, KZr₂(PO₄)₃, a new mineral from Mount Mica and Black Mountain, Oxford County, Maine // Am. Mineral. 1993. V. 78. P. 653–656.

Bykov D. M., Gobechiya E. R., Kabalov Yu. K. et al. Crystal structures of lanthanide and zirconium phosphates with general formula $Ln_{0.33}Zr_2(PO_4)_3$, where Ln = Ce, Eu, Yb. Solid State Chem. 2006. V. 179. P. 3101.

Hong H. Y.-P. Crystal structure and crystal chemistry in the system $Na_{1+x}Zr_2Si_xP_{3-x}O_{12}$ // Mater. Res. Bull. 1972. V. 11. P.173