ПРИМЕНЕНИЕ РЕНТГЕН-ФЛУОРЕСЦЕНТНОГО АНАЛИЗА ПРИ ГЕОХИМИЧЕСКОЙ СЪЕМКЕ

И. А. Блинов, П. В. Хворов

Институт Минералогии УрО РАН, г. Muacc, mohauk@mail.ru

Проведение геологических поисковых и разведочных работ требует большого объема аналитических исследований. Немаловажным фактором при этом является экспрессность исследований, а в свете последних экономических потрясений их невысокая стоимость. Сопоставляя характеристики аналитического оборудования, весьма привлекательным по многим параметрам является рентген-флуоресцентный анализ, осуществляющийся без разрушения вещества и с минимальной пробоподготовкой [Лосев, Смагунова, 1982].

При металлометрической заверке комплексной аномалии в 2007 г. использовался портативный рентген-флуоресцентный спектрометр NITON 593w, в дальнейшем для аналогичных целей применялся прибор INNOV X alfa-4000. Разрешение детектора NITON 593w 300 кэВ, INNOV X составляет порядка 200–250 кэВ. Паспортная чувствительность в зависимости от массы элемента колеблется от 20 до 50 ррт, откалибрована на содержания элементов в чистом кварце и в реальных условиях требует корректировки. Приборы откалиброваны в заводских условиях на 25 элементов, остальные элементы можно определять качественно в режиме просмотра спектров.

Для прибора NITON 593w оценивалось влияние различных параметров на точность измерения. Для измерения пробу помещали в пластиковую кювету со сменным дном из полиэтилена. Изменение расстояния от препарата до детектора: расстояние до 10 мм не приводит к существенному изменению результатов. Применение различных материалов для дна кюветы показало: относительно «толстый» пластик занижает значения в 2 раза, а также дает завышенные значения некоторых элементов, бумага изменяет результаты в пределах ошибки измерения в разной степени в зависимости от качества бумаги. Кроме того, толстый пластик и бумага вносят погрешность наличием тяжелых элементов, входящих в состав наполнителей. Оптимальным вариантом для количественных измерений является тонкая пищевая пленка или пленка, поставляемая производителем, но она более дорогая. Для возможного упрощения работ мы провели измерения непосредственно в бумажных пакетах (изготовленных из миллиметровки) с небольшой экспозицией. Измерения с экспозицией 10 с в бумажном пакете дают практически идентичный результат с измерениями в кюветах при экспозиции 30 с, несмотря на экранирующее действие бумаги. Стоит обратить внимание на наличие и количество содержащихся в бумаге элементов-примесей, которые могут варьировать и в разных сортах бумаги.

При измерении галенитового порошка с прослоем кварцевого порошка выяснилось, что глубина, на которой прибор чувствует свинец галенита, не превышает 5 мм. Зависимость результатов анализа от размера частиц пробы: анализировались образцы в раздробленных фракциях —3+2 мм, —2 мм, —0.5 мм. Результаты измерения в разных фракциях по крупности практически идентичны. Увлажнение пробы занижает результаты до 2 раз. Время экспозиции слабо влияет на результаты измерений, с уменьшением времени экспозиции увеличивается только доверительная точность. Легкие элементы требуют большей экспозиции, тяжелые дают стабильно одинаковые результаты, как на большой, так и на маленькой экспозиции (табл. 1). При этом необходимо опытным путем определять оптимальную величину экспозиции, исходя из набора определяемых элементов и матрицы пробы.

Таблица 1

Анализ фрагмента профиля 154 с разной экспозицией

Sr				Cu				Zn					A	\S		Pb				
30	30 c		10 c		30 c		10 c													
ppm	+/-																			
118	9	104	16	_	32	_	56	364	37	347	66	40	12	_	30	58	14	80	28	
114	9	96	15	_	29	1	56	80	20	62	34	15	8	_	21	28	10	_	24	
75	7	79	13	_	27	1	49	50	17	51	32	178	16	168	28	32	10	32	19	
94	8	109	16	_	27		68	131	25	146	48	205	19	200	36	93	16	85	28	
87	8	82	14	_	28		43	98	22	84	36	57	11	45	19	41	11	48	21	
82	8	66	13	_	28	1	54	163	26	153	45	66	14	47	23	107	16	97	28	
68	7	62	12	_	27	1	46	102	22	76	36	71	13	51	22	72	14	79	25	
69	7	76	14	_	24	1	51	76	19	86	38	57	12	38	20	76	13	60	23	
85	8	86	14	_	28	1	51	77	21	89	38	97	16	123	27	108	17	63	24	
80	8	63	13	_	29		57	90	23	81	39	50	12	49	21	56	13	56	23	
69	7	90	15	_	28	_	59	76	20	66	39	147	16	160	31	58	12	59	24	

Сравнение различных приборов РФА и ААА

Таблица 2

	146-604				158-496					S	ΓΑ			SI	ΗT		В-М			
	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
Mn	141	276	178	150	1004	1211	1410	860	1359	1671	1712	1300	325	379	325	310	2839	1761	1115	920
Cu	87	248	202	94	0	0	33	15	1244	1557	2383	1500	743	775	978	894	10000	17883	12968	21700
Zn	0	73	58	46	96	124	118	115	306	265	417	205	49	49	72	73	30000	66602	26108	48660
As	39	94	45	59	20	23	45	29	190	168	343	234	0	0		0	10000	10799	6235	9011
Pb	0	31	26	13	29	31	30	22	2287	2697	3015	85	0	11		31	40000	15759	9653	12900
Sr	65	117	87	90	145	168	151	155	102	121	117	113	196	216	177	196	65	64	21	50

Примечания: 1 – портативный рентгенофлуоресцентный спектрометр NITON 593w, аналитик П. В. Хворов; 2 – рентгенофлуоресцентный спектрометр последовательного действия PW 2400, аналитик А. И. Якушев; 3 – портативный рентгенфлуоресцентный спектрометр INNOV X, аналитик И. А. Блинов; 4 – атомно-абсорбционный анализ, PERKIN-ELMER 3110, аналитик М. Н. Маляренок; – ниже предела чувствительности; 146–604 – номера реальных металлометрических проб; STA, B-M – искусственная смесь глины и порошка сульфидов тяжелых металлов; SHT – протолочка реальной штуфной пробы.

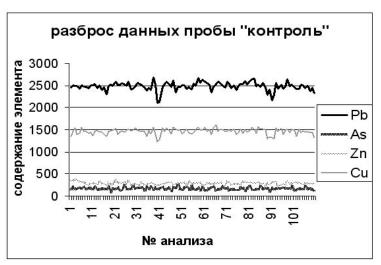


Рис. 1. Вариации замеров пробы «контроль».

Воспроизводимость результатов. Замеры одной и той же пробы проводились в разные дни, на прогретом и непрогретом приборе, до и после калибровки детектора. Все вариации измерений в пределах заявленной ошибки прибора.

При анализе металлометрических проб для определения стабильности работы прибора и контроля результатов после каждой анализируемой партии измерялась одна и та же стандартная проба

(STA). Вариации результатов представлены на рис. 1. По данным 110 измерений стандартное отклонение для всех элементов не более 20 %. Для определения достоверности измерений прибора было проведено его сравнение с другими ренген-флуоресцентными приборами (портативный рентген-флуоресцентный спектрометр INNOV X, рентгенофлуоресцентный спектрометр последовательного действия PW 2400) и AAA (атомно-абсорбционным анализом, PERKIN-ELMER 3110). В таблице 2 представлены результаты сравнения анализов различных РФА и более точного AAA. Такие элементы, как Мп, Сu, Zn, Sr определяются приборами РФА достаточно хорошо и имеют небольшие отклонения от результатов AAA, определение As и Pb нестабильно, существует тенденция к сильному завышению показаний приборов РФА.

Для колчеданных руд и околорудных метасоматитов показана хорошая сходимость данных, полученных на приборе INNOV-X alfa с результатами AAA для Cu, Zn, Mn, Cd, Pb при систематическом завышении результатов РФА [Новоселов и др., 2007]. Погрешности различаются для разных диапазонов концентраций и разных матриц. Результаты в большинстве случаев подчиняются линейной зависимости и характеризуются ранговым коэффициентом корреляции, превышающим 70 %. Для достижения большей точности необходимо применение сходных по матрице эталонов и коррекция аналитических линий.

При многократном измерении одних и тех же растертых проб была получена удовлетворительная воспроизводимость результатов. Стандартное отклонение, полученное для пяти замеров, в основном составляет менее 30 относительных %. Более значительное отклонение (до 90 отн. %) характеризует тяжелые элементы с низким содержанием (Мо, Рb), которые в некоторых параллельных замерах не определяются. Отмечается, что содержания ниже 20–40 ррт для тяжелых металлов не определяются.

Таким образом, при использовании портативных РФА следует учитывать, что для повышения достоверности и точности анализа необходима дополнительная коррекция прибора, в частности, на эталонные образцы, соответствующие исследуемому объекту. Экспрессность метода, минимальная степень пробоподготовки и возможность избирательного подхода к различным объектам позволяет широко использовать этот метод при проведении разного рода геологических работ.

Авторы выражают благодарность Белогуб Е. В., Новоселову К. А., Скориной Е. Г., Удачину В. Н. за помощь в проведении работ.

Работа поддержана ЮУрГу.

Литература

Лосев Н. Ф., Смагунова А. Н. Основы рентгено-спектрального флуоресцентного анализа. М.: Химия, 1982, 208 с.

Новоселов К. А., Белогуб Е. В. и др. // Информационный отчет о результатах тестирования мобильного рентген-флуоресцентного анализатора InnovX // Muacc, 2007, рукопись.