ХИМИЧЕСКИЙ СОСТАВ, НОМЕНКЛАТУРА И ТИПОМОРФНЫЕ ОСОБЕННОСТИ Ru-Os-Ir МИНЕРАЛОВ ТИМСКОЙ СВИТЫ КМА (ЦЕНТРАЛЬНАЯ РОССИЯ)

В. В. Абрамов

Воронежский государственный университет, г. Воронеж, avova82@mail.ru

Металлоносные черные сланцы многими авторами рассматриваются как новый перспективный источник металлов платиновой группы и золота с известными месторождениями и рудопроявлениями Польши, Южного Китая, России, Канады, США и других стран [Гурская, 2000; Лазаренков и др., 2002].

С середины 90-х годов XX столетия на кафедре минералогии и петрологии Воронежского государственного университета ведется изучение высокоуглеродистых сланцев нижнетимской подсвиты, раннепротерозойской оскольской серии Курской магнитной аномалии (КМА). Эти породы, локализованные в пределах центральной части, рифтогенной по своей природе, Тим-Ястребовской структуры Воронежского кристаллического массива (ВКМ), метаморфизованы в условиях зеленосланцевой фации и отличаются повышенными содержаниями благородных металлов (в г/т: Pt – до 0.72, Pd – до 0.61, Au – до 2.20, Rh – до 0.5, Ir – до 1, Os – до 0.06).

В процессе разноплановых геологических работ на территории Тим-Ястребовской структуры было выявлено 15 разномасштабных рудопроявлений и около 60 пунктов минерализации платиноидов, золота, а также несколько десятков литохимических аномалий и ореолов благородных металлов, относящихся к различным геологическим и рудным формациям [Чернышов, и др., 2008].

В настоящее время в составе черных сланцев (тимской тип оруденения) из концентратов тяжелой фракции рудоносных горизонтов выделены и изучены: самородные Pt и Pd; твердые растворы Pt-Pd-Fe, Au-Ag-Hg-Te, Pd-Pt-Au-Ag-Zn состава; селениды Pd и Pt; станниды Pd; теллуроантимониды Pd, Fe, Ni; а также в лаборатории АмурК-НИИ ДВО РАН обнаружены новые минералы платиновых металлов – твердые растворы Os, Ir, Ru, являющиеся объектом исследований, арсенид платины – сперрилит и сульфоарсенид иридия – ирарсит [Рудашевский и др., 1995; Чернышов и др., 2008].

Новые минеральные формы редких платиноидов были установлены в составе малой технологической пробы кварц-мусковитовых высокоуглеродистых сланцев (скважина № 4011 интервал глубин 459.0–477.0 м) с повышенными содержаниями благородных металлов.

Морфология Os-Ir-Ru минералов изменяется в зависимости от содержания основных компонентов (табл. 1): уплощенные округлые зерна по мере увеличения концентрации иридия приобретают гексагональные очертания либо встречаются в виде неправильных кристаллических срастаний.

Таблица 1 Химический состав Os-Ir-Ru минералов нижнетимской подсвиты КМА

№ обр.	Ru	Os	Ir	Fe	Σ	Ru	Os	Ir	Fe	Σ	
	содержание в массовых %						содержание в атомных %				
1	44.28	33.91	20.91	0.78	99.88	29.86	43.03	26.81	0.29	100.00	
2	48.27	24.33	26.70	0.74	100.04	33.23	31.52	34.96	0.28	100.00	
3	42.94	18.58	37.53	0.95	100.00	28.67	23.35	47.64	0.35	100.00	
4	31.78	25.65	42.68	0.005	100.11	19.71	29.94	50.34	0.00	100.00	
5	20.85	45.65	33.59	0.005	100.10	12.22	50.35	37.43	0.00	100.00	
6	20.60	27.85	50.46	0.74	99.65	12.16	30.94	56.65	0.24	100.00	
7	11.65	36.03	51.05	0.77	99.50	6.58	38.32	54.86	0.24	100.00	

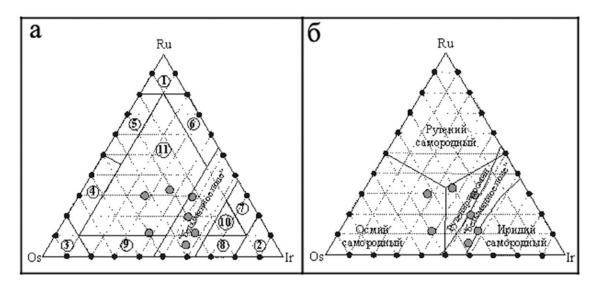


Рис. 1. Положения составов Os-Ir-Ru минералов нижнетимской подсвиты на диаграммах а -1973 г. 1 – Рутений самородный; 2 – Иридий самородный; 3 – Осмий самородный; 4 – Рутенистый осмий; 5 – Осмистый рутений; 6 – Иридистый рутений; 7 – Рутенистый иридий; 8 – Осмирид; 9 – Иридосмин; 10 – Рутеносмирид; 11 – Рутениридосмин, 10 – 1991 г. [Harris, Cabri, 1973; 10 – 1991].

В номенклатуре твердых растворов рутения, осмия и иридия наблюдается некоторая путаница, связанная, как с эволюцией терминов, так и с различными взглядами на классификацию этих минералов советскими и зарубежными исследователями. В отечественной литературе традиционны термины невьянскит (Ir>Os) и сысертскит (Ir<Os). В зарубежной литературе наиболее известны классификации Д. Харриса и Л. Кабри [Harris, Cabri, 1973; 1991]. Классификация 1991 года значительно упрощена и включает 4 минерала, а в более сложной классификации 1973 года насчитывается 11 наименований.

На классификационных треугольных диаграммах [Harris, Cabri, 1973; 1991] приведены положения фигуративных точек составов изученных Os-Ir-Ru минералов нижнетимской подсвиты (рис. 1).

Os-Ir-Ru минералы черных сланцев оскольской серии КМА тяготеют к полям составов рутениридосмина, рутеносмирида и, в меньшей степени, осмирида и иридосмина. Состав 4 минералов соответствует «безымянному» полю, выделение которого в 1973 году было обусловлено отсутствием образцов с подобным соотношением Ru, Os и Ir. В настоящее время в россыпях Корякского нагорья и древних золотоносных конгломератах Витватерсранда обнаружены минералы, составы которых соответствуют этому полю.

Минералы платиновой группы в целом относятся к группе акцессорных, но, тем не менее, по количественному признаку подразделяются на главные, второстепенные, акцессорные, редкие и очень редкие. Минеральные парагенезы главных минералов платиновой группы различных месторождений и рудопроявлений являются важнейшим признаком их рудно-формационной характеристики. Так, в составе платинометальной минерализации расслоенных массивов преобладают классы самородных платины и палладия, сульфидов, арсенидов, теллуридов. В зональных массивах самородные платина и осмий преобладают над сульфидами, арсенидами, станнидами благородных металлов. Минералы Ru, Os, Ir чаще всего отмечаются в офиолитовых массивах и их россыпях при несколько подчиненной роли антимонидов, сульфидов, арсенидов и сульфоарсенидов и благодаря этому приобретают важное типоморфное значение [Лазаренков и др., 2002; «Типоморфизм минералов...», 1994]. В таблице 2 приведены ассоциации главных и второстепенных минералов платиновых металлов некоторых зональных и офиолитовых массивов по данным [«Типоморфизм минералов...», 1994] (табл. 2).

Массивы	а) Главные, б) Второстепенные и редкие минералы платиноидов					
Зональные массивы						
Платиноносный пояс	а) Pt, поликсен, тетраферроплатина, б) Иридистая Pt, самородные					
Урала	Ir, Pd, Rh, осмирид, лаурит, родит, порлецит, сперрилит и др.					
Кондерский массив	а) Изоферроплатина, б) Лаурит, сперрилит, куперит, эрлихманит,					
(Алдан)	изомертиит, иридосмин					
Туламинский массив	а) Изоферроплатина, железистая Рt, самородная Рt, б) Туламинит,					
(Канада)	иридосмин, Os, рутениридосмин, Ir, платиновый Ir, ирарсит, осми-					
	рид					
Массив Гудньюс Бей	а) Pt, осмирид, б) Куперит, лаурит, мертиит, сперрилит, эрлихма-					
(США)	нит, холлингвортит, самородный Os					
Гулинский массив	а) Иридосмин, самородный Os, б) Изоферроплатина, тетраферро-					
(Северная Сибирь)	платина					
Офиолитовые массивы						
Россыпи Корякского	а) Рутениридосмин, иридосмин, б) Самородный Оs, осмирид, са-					
нагорья	мородные Ru, Ir, изоферроплатина, тетраферроплатина, туламинит,					
	лаурит, эрлихманит, ирарсит					
Хромититы Корякского нагорья (Красногорский массив)						
Гарцбургиты	а) Рутениридосмин, сульфиды Ru, Os, Ir, б) Ирарсит, лаурит					
Дуниты	а) Изоферроплатина, рутениридосмин, б) Лаурит					
Кимперсайский массив	а) Иридосмин, осмирид, арсениды и сульфоарсениды Os и Ir, твердые растворы Ir-Os-Fe-Ni, Cu-Os, б) Орселит, маухерит					

Сопоставление минеральных форм благородных металлов в черных сланцах тимского типа и в указанных в таблице 2 массивах показывает наибольшее сходство по этому признаку между сланцами КМА и ультрамафитами Корякского нагорья и их россыпями. Это сравнение позволяет сделать некоторые выводы о природе минералов Ru, Os, Ir в углеродистых сланцах оскольской серии, а именно предположить, что источниками минералов редких платиноидов могли служить близкие к офиолитовым массивам Корякского нагорья образования Воронежского кристаллического массива.

Литература

Гурская Π . U. Платинометалльное оруденение черносланцевого типа и критерии его прогнозирования / Л. И. Гурская. СПб.: ВСЕГЕИ, 2000. 208 с.

Лазаренков В. Г. Месторождения платиновых металлов / В. Г. Лазаренков, С. В. Петров, И. В. Таловина // СПб.: Недра, 2002. 298 с.

Рудашевский Н. С. Минералы платиновой группы из черных сланцев КМА / Н. С. Рудашевский, В. В. Кнауф, Н. М. Чернышов // Докл. РАН, 1995. Т. 334. № 1. С. 91–95.

Типоморфизм минералов платиновой группы: учеб. пособие / В. Г. Лазаренков, А. Г. Мочалов, А. В. Неупокоев. Санкт-Петербургский гос. горный ин-т, Спб., 1994. 175 с.

Чернышов Н. М. Новые минеральные формы платиноидов в черносланцевом типе благороднометалльного оруденения КМА (Центральная Россия) / Н. М. Чернышов, В. Г. Моисеенко, В. В. Абрамов // Докл. РАН, 2008. Т. 423. № 3. С. 379–382.

Harris D. C., Cabri L. J. Nomenclature of platinum-group element alloys: rewire and revision // Canada. Mineral., 1991. V. 29. P. 231–237.

Harris D. C., Cabri L. J. The nomenclature of the natural alloys of osmium, iridium and ruthenium based on new compositional data of alloys from world-wide occurrence // Canada. Mineral., 1973. V. 12. P. 104–112.