.**А.А. Самигуллин, И.Р. Рахимов** Институт геологии УФИЦ РАН, г. Уфа, Россия samigullinaidar85@gmail.com

Редкоземельная минерализация монцонит-порфиритов Шартымского массива (Балбукский комплекс, Южный Урал)

A.A. Samigullin, I.R. Rakhimov Institute of Geology UFRC RAS, Ufa, Russia

Rare earth mineralization of monzonite porphirites of Shartym pluton (Balbuk complex, South Urals)

Abstract. The eastern part of the Shartym pluton (Balbuk complex, South Urals) consists of monzoniteporphyrites. Phenocrysts are composed of clinopyroxene and plagioclase. Rare earth mineralization includes REE-bearing epidote and allanite in contrast to phase 2 rhyolite porphyries, which, in addition to the above minerals, contain monazite and xenotime.

Введение. Шартымский массив расположен на северном замыкании Магнитогорской мегазоны и традиционно относится к балбукскому комплексу [Анисимов и др., 1983; Холоднов и др., 2009]. Он характеризуется изометричными очертаниями, хорошо выражен в рельефе, его относительная высота – 180 м. Локализован массив в вулканогенно-осадочных породах верхнего девона и нижнего карбона: бугодакская толща (D_3bd) сложена туфами и туфопесчаниками базальтов и андезибазальтов; зилаирская свита (D_3-C_1zl) – полимиктовыми песчаниками, алевролитами и аргиллитами с карбонатным цементом; кизильская свита (C_1kz) – известняками. Массив является полифазным: южная, юго-восточная и восточная части состоят из монцонит-порфиритов 1 фазы балбукского комплекса; центральная и западная части массива сложены риолит-порфирами 2 фазы балбукского комплекса [Анисимов и др., 1983]. Петрогеохимические и минералогические особенности и РЗЭ минерализация гранитоидов 2 фазы описаны в работах [Самигуллин, Рахимов, 2023а; 20236]. Целью данной работы является описание РЗЭ минерализации монцонит-порфиритов 1 фазы.

Методы исследований. Из образцов магматических пород Шартымского массива изготовлены петрографические шлифы и полированные пластины, которые изучались под поляризационным микроскопом Carl Zeiss Axioskop 40. Электронно-микроскопические исследования с определением составов минералов проводились на СЭМ Tescan Vega Compact с ЭДС Xplorer 15 Oxford Instruments при ускоряющем напряжении 20 кВ, токе зонда 3–4 нА и времени накопления спектра в точке 20 с в режиме «Point&ID» (оператор С.С. Ковалев). Исследования проводились в Институте геологии УФИЦ РАН (г. Уфа).

Результаты и обсуждение. Изученные монцонит-порфириты обладают порфировидной структурой (рис. 1). Фенокристаллы представлены субидиоморфным серицитизированным и альбитизированным плагиоклазом (размер 1–2 мм) и ксеноморфным клинопироксеном (размер 0.5–3 мм), который по химическому составу соответствует диопсиду (рис. 2а). В основной массе присутствуют плагиоклаз, клинопироксен и хлорит. Вторичные минералы – эпидот, серицит, амфибол и хлорит. Из акцессорных минералов установлены титанит, магнетит, ильменит, апатит, циркон, алланит.

РЗЭ минерализация представлена РЗЭ-содержащим эпидотом и алланитом-Се. РЗЭ-содержащий эпидот в монцонит-порфирах образует ксеноморфные выделения размером от 10 до 50 мкм в интерстициях минералов основной массы (рис. 3a). Эпидот содер-

Рис. 1. Порфировидная структура монцонит-порфиритов. Фото в поляризованном свете (николи: а – скрещены, б – параллельны).

Рис. 2. Классификационная диаграмма для клинопироксенов [Morimoto, 1988] (а) и эпидота и алланита [Petrík et al., 1995] с использованием результатов пересчета анализов на кристаллохимические формулы (б) для монцонит-порфиритов Шартымского массива.

Рис. 3. РЗЭ-минерализация монцонит-порфиритов Шартымского массива: а – РЗЭ-содержащий эпидот, б – алланит-Се. ВSE-изображения.

Таблица

Химический состав РЗЭ-содержащего эпидота и алланита-Се (мас. %)

	РЗЭ-содержащий эпидот		Алланит-Се			
Компоненты	1	2	3	4	5	6
SiO ₂	37.41	36.81	36.11	30.19	32.38	32.74
Al ₂ O ₃	23.41	23.15	7.41	9.68	13.81	10.58
CaO	21.11	20.95	10.29	11.29	16.10	11.61
Sc ₂ O ₃	0.40	0.35	_	_	_	_
MnO	0.92	0.87	_	_	-	_
TiO ₂	_	—	3.45	2.42	1.74	2.45
CoO	_	-	0.23	_	-	_
FeO	12.12	12.68	17.91	18.74	17.17	17.99
La ₂ O ₃	1.63	1.68	5.94	5.91	3.73	5.00
Ce ₂ O ₃	2.45	2.53	10.83	12.21	6.47	10.30
Pr ₂ O ₃	_	—	_	0.83	0.45	0.80
Nd ₂ O ₃	0.66	0.79	2.85	3.28	1.51	2.79
Сумма	100.11	99.81	95.72	95.18	93.77	95.39

жит (мас. %) MnO до 0.92, Sc₂O₃ до 0.40, La₂O₃ 1.63–1.68, Ce₂O₃ 2.45–2.53 и Nd₂O₃ 0.66–0.79 (табл.). Алланит-Се образует ксеноморфные выделения размером от 10 до 55 мкм, которые приурочены к контактам зерен эпидота с амфиболом (рис. 36), а также тесно ассоциирует с РЗЭ-содержащим эпидотом. Доминирующим среди лантаноидов является Ce₂O₃ 6.47–12.21, подчиненную роль играют (мас. %) La₂O₃ 3.73–5.94, Pr₂O₃ 0–0.83 и Nd₂O₃ 1.51–3.28 (табл.). На диаграмме Al–REE (формульные коэффициенты), содержания Σ РЗЭ в алланите-Се составляют 0.75 к.ф. при пониженных значениях Al в отличие от таковых в РЗЭ-содержащем эпидоте (Σ РЗЭ <0.1) (рис. 26).

Выводы. В монцонитах-порфиритах Шартымского массива обнаружена редкоземельная минерализация, представленная алланитом-Се и РЗЭ-содержащим эпидотом, которая отличается от минерализации риолит-порфиров 2 фазы отсутствием монацита и ксенотима. Ранее отнесение монцонит-порфиритов изучаемого массива к балбукскому комплексу некоторыми исследователями ставилось под сомнение, однако присутствие РЗЭ-содержащего эпидота является типоморфной особенностью этих пород [Макагонов, Котляров, 2016] и подтверждает, что восточная часть массива относится к балбукскому комплексу.

Исследования выполнены за счет гранта РНФ № 22-77-10049.

Литература

Анисимов И.С., Сопко Л.Н., Ямаев Ф.А. и др. Отчет по геологическому доизучению масштаба 1:50000 Северо-Учалинской площади (планшеты: N-40–48В-б, в, г; N-40– 59Б-б, г; N-40–60А; N-40– 72А) за 1978–1983 гг., Уфа, 1983.

Самигуллин А.А., Рахимов И.Р. РЗЭ-минерализация гранитоидов Шартымского массива (Балбукский комплекс, Южный Урал) // Металлогения древних и современных океанов–2023. Миасс: ЮУ ФНЦ МиГ УрО РАН, 2023а. С. 166–170.

Самигуллин А.А., Рахимов И.Р. Минералого-геохимические особенности гранитных массивов Аушкуль, Каматал и Шартым (Балбукский комплекс, Южный Урал) // Геологический вестник. 20236. № 3. С. 74–86.

Макагонов Е.П., Котляров В.А. Редкоземельная минерализация в щелочных и субщелочных породах Балбукского комплекса (Южный Урал) // Минералогия. 2016. № 2. С. 34–43. Холоднов В.В., Шагалов Е.С., Бородина Н.С. Гранитоидный магматизм северной части Магнитогорской мегазоны: петрогенезис, геохимическая и металлогеническая эволюция (Au, Mo, W и др.) // Вестник Уральского отделения РМО. 2009. № 6. С. 3–29.

Morimoto N. Nomenclature of pyroxenes // Mineralogy and Petrology. 1988. Vol. 39. P. 55-76.

Petrík I., Broska I., Lipka J., Siman P. Granitoid allanite-(Ce) substitution relations, redox conditions and REE distributions (on an example of I-type granitoids, Western Carpathians, Slovakia) // Geologica Carpathica. 1995. Vol. 46. P. 79–94.

А.Б. Немов, Е.В. Медведева

Южно-Уральский федеральный научный центр минералогии и геоэкологии УрО РАН, г. Миасс, Россия ya.andrew808@yandex.ru

Тектониты апосиенитовой пластины Центральной щелочной полосы Ильмено-Вишневогорского полиметаморфического комплекса, Южный Урал

A.B. Nemov, E.V. Medvedeva

South Urals Federal Research Center of Mineralogy and Geoecology UB RAS, Miass, Russia

Tectonites of an after-syenite sheet of Central alkaline band of the Ilmeny-Vishnevogorsky polymetamorphic complex, South Urals

Abstract. The work presents the results of studies of tectonites from an after-syenite tectonic sheet from the Central alkaline band of the Ilmeny-Vishnevogorsky polymetamorphic complex, South Urals. The varying composition of mineral assemblages of tectonites indicates the replacement of high-temperature by low-temperature assemblages. The replacement processes in minerals and geochemical features of rocks indicate the redistributions of elements in rocks under continental crustal conditions with the change in regimes silicic-alkaline metasomatosis.

Введение. Ильмено-Вишневогорский полиметаморфический комплекс (ИВПК) на Южном Урале широко известен в мире богатством минерального разнообразия, которое, прежде всего, связано с породами щелочно-карбонатитовой ассоциации с миаскитовыми массивами (Ильменогорским и Вишневогорским) и породами Центральной щелочной полосы (ЦЩП), где выделяют щелочные метасоматиты, автохтонные миаскиты и сиениты, меланократовые карбонатно-силикатные породы и карбонатиты [Левин и др., 1997]. В пределах Ильменогорского массива в вертикальном разрезе выделяют подинтрузивный, интрузивный и надинтрузивный субкомплексы. Породы ЦЩП расположены в зоне максимального давления Уфимского субширотного выступа. Существуют представления о том, что оба миаскитовых массива слагали единое тело, которое при коллизионных процессах было разъединено и растянуто в осевой части ИВПК. В районе ЦШП проявлено чешуйчато-блоковое строение, обусловленное широким развитием преимущественно субширотных меридиональных разрывных нарушений [Юрецкий и др., 1982; Баженов и др., 1992; Петров и др., 2015], наиболее крупные из которых (с запада на восток) – Селянкинско-Вишневогорский и Таткульский. Исследование вещественного состава пород и их структурно-текстурных особенностей позволило установить присутствие меридионально вытянутых пластин, сложенных породами, испытавшими динамометаморфизм. По вещественному составу выделяются апосиенитовая, апогнейсовая, гранодиоритовая и другие пластины. Цель данной работы – определение сте-