находится в центральной части территории. В зоне Б наблюдаются пониженные значения до $0.4 \text{ м}^3/\text{к}\Gamma$ и в зоне B — самые низкие (от $0.4 \text{ до } 0.24 \text{ м}^3/\text{к}\Gamma$). Методом коэрцитиметрии во всех образцах выделены участки «насыщения» или «обеднения», что говорит о большем присутствии магнетита и магнезиоферрита в образцах из этих участков, соответственно.

Таким образом, магнитные свойства (намагниченность, магнитная восприимчивость, напряженность магнитного поля) серпентинитов Атлянского полигона обусловлены содержанием магнитных (магнетита, титаномагнетита, магнезиоферрита) и других железосодержащих (гематит, гетит) минералов, которые образовались при замещении серпентином темноцветных минералов ультрамафитов войкарско-кемпирсайского комплекса. На основе измерения магнитной восприимчивости построена карта магнитного поля территории с повышенными значениями магнитного поля в центральной части и пониженными — на периферии, что связано с постепенным понижением содержания магнетита в этом направлении.

Литература

Аулов Б.Н., Владимирцева Ю.А., Гвоздик Н.И. и др. Государственная геологическая карта Российской Федерации. Масштаб 1 : 200 000. Издание второе. Серия Южно-Уральская. Лист N-40-XII — Златоуст. Объяснительная записка. М.: МФ ВСЕГЕИ, 2015. 365 с.

А.Р. Гайнанова¹, О.П. Шиловский², М.С. Глухов^{2, 3}

¹ — Институт ТатНИПИнефть ПАО Татнефть
им. В.Д. Шашина, г. Альметьевск, Россия
barmiceras@gmail.com

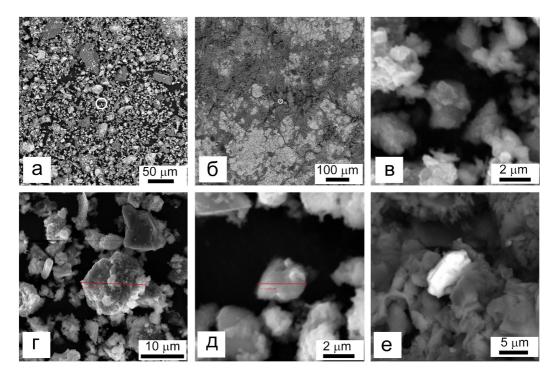
² — Казанский (Приволжский) федеральный университет, г. Казань, Россия

³ — Институт геологии и геохимии
им. акад. А.Н. Заварицкого УрО РАН, г. Екатеринбург, Россия

Исследование РЗЭ минералов в пиритовых конкрециях методом СЭМ

A.R. Gaynanova¹, O.P. Shilovsky², M.S. Glukhov^{2,3}

¹ – Shashin TatNIPIneft Institute, PJSC TATNEFT, Almet'evsk, Russia


² – Kazan Federal University, Kazan, Russia

³ – Zavaritsky Institute of Geology and Geochemistry UB RAS, Yekaterinburg, Russia

SEM study of REE minerals in pyrite nodules

Abstract. Pyrite nodules from the Middle Jurassic sediments at the Tarkhanovy pier tract (Republic of Tatarstan) are studied. Monazite-Ce contains highly variable light REE amounts (wt. %): La_2O_3 9.00–22.00, Ce_2O_3 13.00–42.32, Pr_2O_3 2.08–2.53, Nd_2O_3 4.30–17.01, as well as medium REE (Sm_2O_3 up to 2.36, Gd_2O_3 up to 1.49) and ThO₂ (1.99–7.43).

Сульфидное стратиформное проявление на правом берегу р. Волги на территории урочища Тархановская пристань (Республика Татарстан) приурочено к среднеюрским песчано-алеврито-глинистым породам, залегающим с размывом и перерывом на пестроцветных породах верхней перми [Митта и др., 2014]. Песчано-алеврито-глинистые породы содержат многочисленные пиритовые конкреции. Их особенностью являются повышенные содержа-

Puc. Морфология монацита в пиритовых конкрециях: а, б — общий вид пылеватой массы (а) и поверхности скола (б); в—д — плохо окристаллизованный монацит в пылеватой массе; г — таблитчатый кристалл на свежем сколе. СЭМ-фото. Кругом обозначены места находки монацита.

ния РЗЭ (44–51 г/т), максимальные концентрации которых отмечены для Y, La, Ce, Pr, Nd, Sm, минимальные – для Lu, Ho, Er, Yb, Tb, Eu, Sm, Dy, Gd. Ранее пиритовые конкреции были изучены с помощью ИСП-МС, рентгенофазового анализа и СЭМ [Гайнанова, Шиловский, 2023]. Цель настоящей работы – изучение морфологии и состава минеральных агрегатов РЗЭ в составе пиритовых конкреций. Выявление источников РЗЭ для конкреций может способствовать уточнению палеореконструкций с одной стороны и экзотических стратиформных скоплений РЗЭ – с другой [Шатров, Войцеховский, 2009; Шарков, 2015]. Задачи исследования: изучение формы, облика, размеров, минерального и химического состава пиритовых конкреций.

Пиритовые конкреции отобраны в одном из обнажений глинистых отложений. В работе исследованы два образца: из образца № 2 изготовлена порошковая проба тонко-микрозернистой размерности, из образца № 3 — проба со свежим сколом и порошковая проба (рис. а, б). Морфология и химический состав минеральных агрегатов пиритовых конкреций определялись на СЭМ Tescan VEGA 4 с рентгеноспектральным микроанализом в Институте ТатНИПИнефть ПАО Татнефть (г. Альметьевск).

В пиритовых конкрециях установлены микрокристаллы монацита размером 3–15 мкм. В большинстве случаев они плохо окристаллизованы и с поверхности «загрязнены» другими микрочастицами (рис. в–д). Более крупные частицы монацита представлены таблитчатыми кристаллами с наиболее явными гранями по $\{101\}$ и $\{011\}$ (рис. е). На свежем сколе образцов (рис. б) монацит ассоциирует с калиевыми алюмосиликатами (мас. %): SiO $_2$ 58.06, Al $_2$ O $_3$ 19.94, K $_2$ O 22.34. По данным рентгенофазового анализа, предполагается присутствие полевых шпатов в составе пиритовых конкреций.

По данным ЭДС анализа состав РЗЭ минералов соответствует монациту-Се: содержания Се значительно преобладают над другими РЗЭ. Содержания легких РЗЭ в монаците широко варьируют (мас. %): La_2O_3 9.00–22.00, Ce_2O_3 13.00–42.32, Pr_2O_3 2.08–2.53, Nd_2O_3 4.30–17.01. В единичных случаях определены средние РЗЭ: Sm_2O_3 (2.36 мас. %) и Gd_2O_3 (1.49 мас. %.). В составе монацита из пылеватой массы зафиксирован ThO₃ (1.99–7.43 мас. %).

Сульфидное рудопроявление на территории урочища Тархановская пристань является следствием придонных холодных газово-флюидных просачиваний в период развития Среднерусского палеоморя [Королев, Николаева, 2012]. Часто газово-жидкие просачивания несут в себе различные компоненты, которые могут быть как «полезными» для рудообразования, так и вредными [Беленицкая, 2011]. Вероятно, они являются внешним фактором миграции компонентов от первоисточника. На основании работ других исследователей [Мальков и др., 2004] можно предполагать, что источником РЗЭ для пиритовых конкреций, как и для окаменевших фрагментов костей морских ящеров [Глухов и др., 2023], являются латеритные коры выветривания.

Литература

Беленицкая Γ .A. Флюидное направление литологии: состояние, объекты, задачи // Ученые записки Казанского Университета. 2011. Т. 153. Кн. 4. С. 97–113.

Гайнанова А.Р., Шиловский О.П. Минералого-геохимические особенности среднеюрских пиритовых конкреций урочища Тархановская пристань, республика Татарстан // Металлогения древних и современных океанов—2023. Минералогия и геохимия рудных месторождений: от теории к практике. Миасс: ЮУ ФНЦ МиГ УрО РАН, 2023. С. 219—220.

Глухов М.С., Шиловский О.П., Муллакаев А.И. Особенности диагенетического минералообразования в костной ткани позвонков морских рептилий из верхнеюрских отложений Республики Татарстан // Металлогения древних и современных океанов—2023. Минералогия и геохимия рудных месторождений: от теории к практике. Миасс: ЮУ ФНЦ МиГ УрО РАН, 2023. С. 209—213.

Королёв Э.А., Николаева В.М. Проявления очагов разгрузок сероводородных флюидов в юрских отложениях северо-восточной окраины Ульяновско-Саратовского прогиба // Мат. Всерос. литол. сов., посв. 100-лет. со дня рожд. Л.Б. Рухина. СПб.: СПбГУ, 2012. С. 249–251.

Мальков Б.А., Лысюк А.Ю., Иванова Т.И. Минеральный состав и микроэлементы окаменелых костей морских ящеров местонахождения Каргорт (республика Коми) // Вестник институт Коми НЦ УрО РАН. 2004. № 1. С. 11-15.

Митта В.В., Костылева В.В., Глинских Л.А. и др. Стратиграфия средней юры юго-запада Республики Татарстан // Стратиграфия. Геологическая корреляция. 2014. Т. 22. № 1. С. 31–46.

Шарков А.А. Геологический феномен ураново-редкометальных месторождений // Природа. 2015. № 2. С. 21–30.

Шатров В.А., Войцеховский Г.В. Применение лантаноидов для реконструкции обстановок осад-кообразования в фанерозое и протерозое (на примере разрезов чехла и фундамента Восточно-Европейской платформы) // Геохимия. 2009. № 8. С. 805–824.