Artemyev D.A., Ankushev M.N. Trace elements of Cu-(Fe)-sulfide inclusions in Bronze age copper slags from South Urals and Kazakhstan: ore sources and alloying additions // Minerals. 2019. Vol. 9. 746.

Chen J., Algeo Th. J., Zhao L., Chen Zh.-Q., Cao L., Zhang L., Li Y. Diagenetic uptake of rare earth elements by bioapatite, with an example from Lower Triassic conodonts of South China // Earth Science Review. 2015. Vol. 149. P. 181–202.

Kokh S.N., Sokol E.V., Kozmenko O.A., Nekipelova A.V, Rudmin M., Khvorov P.V., Artemyev D.A. Rare earth elements in high-phosphorus ooidal ironstones, a case study of the Kamysh-Burun deposit (Azov–Black Sea iron ore province) // Ore Geology Reviews. 2020 (in press).

Rothe M., Kleeberg A., Hupfer M. The occurrence, identification and environmental relevance of vivianite in waterlogged soils and aquatic sediments // Earth-Science Reviews. 2016. Vol. 158. P. 51–64.

Taylor S.R., McLennan S.M. The continental crust: its evolution and composition. Oxford: Blackwell Scientific Publications, 1985. 312 p.

USEPA, 2007. Method 3051A – Microwave Assisted Acid Digestion of Sediments, Sludges, Soils, and Oils 1-30.

Yang J., Torres M., McManus J., Algeo T.J., Hakala J.A., Verba C. Controls on rare earth element distributions in ancient organic-rich sedimentary sequences: role of post-depositional diagenesis of phosphorus phases // Chemical Geology. 2017. Vol. 466. P. 533–544.

М.В. Заботина Южно-Уральский федеральный научный центр минералогии и геоэкологии УрО РАН, Институт минералогии, г. Миасс mary 7-88@mail.ru

Условия рудообразования на Дрожиловском редкометалльном месторождении, Казахстан

Рост спроса на редкие металлы, такие как Мо и W, привел к тому, что за последние три года цены на оксид Мо выросли на 20 % [ttps://kaztrade.ru]. Это определяет актуальность разработки и изучения редкометалльных грейзеновых месторождений. Целью данной работы является оценка условий рудообразования на Дрожиловском редкометалльном месторождении (Казахстан) на основе изучения флюидных включений в рудных кварцевых жилах и использования хлоритовых геотермометров.

Дрожиловское месторождение комплексных молибденовых руд было открыто H.C. Преображенским при проведении поисково-съемочных работ масштаба 1:50000 в 1964–1968 гг. [Бекмагамбетов и др., 2011]. В настоящее время разведку и добычу Мо и W на Дрожиловском месторождении ведет ТОО СП «Казахстанско-Российская рудная компания». Доказанные запасы на месторождении составляют 140 млн т руды при среднем содержании Mo 0.19 % и W 0.05 %, что составляет 263 и 64.3 тыс. т Мо и W, соответственно [https://kaztrade.ru].

Дрожиловское месторождение расположено в Денисовском районе Костанайской области, в 150 км к юго-западу от г. Рудный. Месторождение приурочено к Троицкой антиклинальной зоне, ограниченной двумя главными меридиональными разломами: Джетыгаринским (восточным) и Тобольским (западным). Месторождение залегает в метаморфизованных и метасоматически измененных кварцитах, сланцах, песчаниках и тальк-карбонатных породах верхнего протерозоя (городищенская и алексеевская свиты). Реже встречаются амфиболиты, образующие пластообразные тела мощностью до первых десятков метров. Перечисленные комплексы смяты в пологие складки северо-северо-восточного простирания. Вмещающие породы подвержены турмалинизации, флогопитизации, мусковитизации, серицитизации, хлоритизации, карбонатизации, окварцеванию и оталькованию. Протерозойские отложения перекрыты глинистыми продуктами коры выветривания триаса-юры мощностью 5–50 м и суглинками и глинами четвертичного возраста мощностью 4 м. В геологическом строении принимают диориты, диорит-порфириты и лейкограниты джабык-карагайского комплекса, залегающие в виде даек и межпластовых тел [Бекмагамбетов и др., 2011].

Рудная минерализация представлена неравномерно рассеянной вкрапленностью, гнездами и прожилками сульфидов, оксидов Fe и Ti в слюдистых сланцах, грейзенах и грейзенизированных песчаниках и приурочена к интерстициям и зальбандам кварцевых, кварц-полевошпатовых и флюорит-кварц-мусковитовых жил. Ориентировка вкраплений иногда подчеркивает директивность текстуры сланцев. Среди рудных минералов широко развиты молибденит, халькопирит, пирротин, пирит, магнетит, ильменит (ильменорутил) и рутил, реже присутствуют шеелит и вольфрамит. Ранее на месторождении установлены также марказит, халькозин, сфалерит, галенит и висмутин [Бекмагамбетов и др., 2011]. Жильные минералы представлены кварцем, полевым шпатом (альбитом, микроклином), мусковитом, карбонатом двух морфологических разновидностей (кальцитом-папиршпатом и ксеноморфным карбонатом в виде пятен) и флюоритом. Участками развиты глинистые минералы, среди которых преобладает каолинит. Как акцессорные встречаются топаз и берилл, а также фенакит и поллуцит по данным [Бекмагамбетов и др., 2011].

Хлорит (пеннин-шамозит) (рис. 1а) установлен в мусковитовых грейзенах. Хлорит мелкочешуйчатый и микросноповидный, заполняет интерстиции в сноповидных сростках мусковита и пластинчатого кальцита (папиршпата) наряду с агрегатами кварца, флюоритом иногда с вростками кварца, топаза и берилла. Температуры образования хлорита, рассчитанные по хлоритовым геотермометрам [Kranidiotis, MacLean, 1987; Cathelinau, 1988; Jowett, 1991], укладываются в узкий диапазон значений: 290–323, 232–274 и 239–282 °C, соответственно (рис. 16).

Флюидные включения (ФВ) изучались методами термометрии в микротермокамере TMS-600 Linkam, позволяющей производить измерения температур фазовых переходов в интервале температур – 196 до 600 °C, на микроскопе Olympus с объективом 100^x в лаборатории термобарогеохимии Южно-Уральского государственного университета (г. Миасс). Управляющее програмное обеспечение LinkSys V-2.39. Точность измерений составляет ±0.1 °C в интервале температур –20...+80 °C и ±1 °C за пределами этого интервала.

В одном образце кварца из молибденит-содержащих кварцевых жил установлены первичные двухфазные (жидкость + газ CO₂), трехфазные (жидкость + газ CO₂ + жидкая CO₂) и вторичные ФВ. Двухфазные ФВ – светлые, прозрачные, трехфазные – нередко темные, их форма вытянутая, овальная, трубчатая, иногда с элементами кристаллической огранки. Размер ФВ в плоскости препарата варьирует от 8 до 18 мкм по удлинению и от 3 до 6 мкм по ширине. Объем газовой вакуоли составляет 10–30 об. % в двухфазных ФВ; в трехфазных – жидкая углекислота занимает до 40 об. % от ФВ, газовая вакуоль в 2–3 раза меньше объема, занимаемого жидкой углекислотой. Нами были изучены только первичные ФВ.

Рис. 1. Состав хлоритов из рудоносных метасоматитов в координатах: Fe/(Fe+Mg) и Si/(Si+Al^{IV}) (а) и температуры образования хлоритов, рассчитанные по [Cathelineau, 1988], [Kranidiotis, 1987] и [Jowett, 1991] (б).

ФВ замораживались до температуры –100 °С. При оттаивании включений вблизи тройной точки углекислоты (–56.6 °С) наблюдались фазовые изменения, которые подтверждают ее присутствие. При дальнейшем оттаивании в солевом растворе оценивалась температура эвтектики (начало оттаивания льда), по которой определялся солевой состав раствора [Борисенко, 1977]. По температуре плавления последнего кристалла льда оценивалась соленость раствора [Реддер, 1987]. Измерялась температура частичной гомогенизации (гомогенизации углекислоты), с помощью которой на PVT диаграмме, построенной по данным [Справочник..., 1963], определялась плотность углекислоты. Затем измерялась температура полной гомогенизации ФВ. Давление при минералообразовании в трехфазных углекислотных включениях оценивалось по методике [Симонов, 1981]. Истинные температуры минералообразования рассчитаны с учетом поправки на давление.

Диапазон значений температур гомогенизации ($T_{\text{гом}}$) обоих типов первичных ФВ составил 197–335 °C (n 35), при этом $T_{\text{гом}}$ двухфазных ФВ варьирует в пределах 198–323 °C (n 23) с максимумом значений 210–270 °C, трехфазных – в пределах 196–335 °C (n 12) с преобладанием значений 250–300 °C (рис. 2а). Температуры эвтектики ($T_{\text{звт</sub>}$) (от –20.1 до –24.0 °C) (n 33) солевого раствора соответствуют системе NaCl–H₂O (–21.2 °C), в единичных случаях – NaCl–KCl–H₂O (–23.5 °C) и NaCl–NaHCO₃–H₂O (–21.8 °C) (рис. 26).

Концентрация солей в растворе варьирует от 2.8 до 9.8 мас. % NaCl-экв. (n 35) с преобладанием значений 3.5–7.0 и 8.5–9.0 мас. % NaCl-экв. (см. рис. 2a). Углекислота содержит примеси, поскольку температура ее тройной точки (от –55.6 до –57.5 °C) (n 11) отличается от стандартной (–56.6 °C). Углекислота гомогенизируется в жидкую фазу при температурах от 11.8 до 30.9 °C (n 12). Согласно этим данным, плотность углекислоты составила 1.19–1.52 г/см³ с преобладанием значений 1.51. Давление оценено в 0.6–1.7 кбар (n 12) со средним значением 0.75–1 кбар. С учетом поправки на давление (55–110 °C) истинные температуры минералообразования ($T_{\rm M}$) составили 251.8–390 °C (n 12) с преобладанием значений 310–320, 360–375 и 390–400 °C.

Температуры образования кварца из жил с молибденитом, в целом, согласуются с температурами образования хлоритов из рудоносных грейзенов, хотя отмечаются и

Рис. 2. Диаграммы Т_{гом}-С(соленость) (а), Т_{гом}-Т_{эвт} (б) для флюидных включений в кварце.

более высокие температуры образования кварца. Возможно, на Дрожиловском месторождении сначала происходило образование кварцевых жил, а затем на их завершающей стадии синхронное с ними формирование грейзенов с молибденитом.

Сравнение полученных данных по ФВ с таковыми по типичным грейзеновым редкометалльным месторождениям как Акчатау, Шумиловское и Коклановское показывает, что $T_{\Gamma OM}$ (197–335 °C) ФВ в кварце на Дрожиловском месторождении близки таковым (353–260 °C) в кварце из грейзенов Шумиловского месторождения [Ступак, 2010ф]. Истинные T_{M} (252–390 °C) на Дрожиловском месторождении попадают в интервалы 480–300 и 225–465 °C температур формирования грейзенов на месторождения..., 1998; Бычков, Матвеева, 2008] и Коклановское [Заботина, 2014]. В растворе преобладают NaCl, KCl \pm NaHCO₃ и CO₂ на Дрожиловском месторождении достворами месторождения (Метасоматизм..., 1998; Бычков, Матвеева, 2008] и хлоридно-калиево-натриевыми растворами месторождения Акчатау [Метасоматизм..., 1998] и хлоридно-калиево-натриевыми растворами месторождения Акчатау [Метасоматизм..., 1998] и хлоридно-калиево-натриевыми растворами с возможной примесью NaF, KF и NaHCO₃ Коклановского месторождения [Заботина, 2014].

 T_{3BT} (от –20.1 до –24 °C) сходна с T_{3BT} (от –20.5 до –26 °C) на Коклановском месторождении [Заботина, 2014], однако отличается от таковых (от –28 до –42 °C) на Шумиловском месторождении, где, наряду с хлоридами Na, во флюиде содержатся хлориды Mg [Ступак, 2010ф]. Концентрации солей в растворах (2.8–9.8 мас. % NaCl-экв.) на Дрожиловском месторождении близки таковым в растворах на Шумиловском (5.4– 14.6 мас. % NaCl-экв.) [Ступак, 2010ф] и Коклановском (0.5–23.4 мас. % NaCl-экв.) [Заботина, 2014] месторождениях, соответственно, и существенно ниже, чем на Акчатау (30–65 мас. % NaCl-экв) [Метасоматизм..., 1998]. По данным [Бычков, Матвеева, 2008], соленость растворов на месторождении Акчатау составила 13–23 % NaCl-экв., что ближе нашим данным. Давление (0.6–1.7 кбар) на Дрожиловском сопоставимо с давлением на месторождениях Акчатау (0.7–1.6 кбар [Метасоматизм..., 1998] и 0.2– 2.8 кбар [Бычков, Матвеева, 2008]) и Коклановском (~1.1 кбар) [Заботина, 2014].

Таким образом, образование кварцевых жил и мусковитовых грейзенов с молибденитом на Дрожиловском месторождении происходило при температурах 300–400 °C и 290–320 °C, соответственно, из слабо- и среднесоленых растворов (2.8–9.8 мас. % NaCl-экв.) преимущественно в хлоридно-натриевой системе.

Автор выражает благодарность Е.В. Белогуб, К.А. Новоселову и Д.В. Гуревичу за предоставленные образцы и материалы и О.Ю. Плотинской за полезные рекомендации и замечания при выполнении работы. Исследования выполнены при поддержке РФФИ (проект № 19-05-00254).

Литература

Бекмагамбетов Б.И., Евлампьев А.Т., Шестак Г.И. Смирновское и Дрожиловское месторождения комплексных молибденовых руд Кустанайского Зауралья – новая минерально-сырьевая база редкометалльной промышленности Казахстана (Республика Казахстан) // Горно-геологический журнал. 2011. № 3–4 (27–28). С. 3–9.

Борисенко А.С. Изучение солевого состава растворов газово-жидких включений в минералах методом криометрии // Геология и геофизика. 1977. № 8. С. 16–28.

Бычков А.Ю., Матвеева С.С. Термодинамическая модель формирования рудных тел вольфрамового жильно-грейзенового месторождения Акчатау // Геохимия. 2008. № 9. С. 934–954.

Метасоматизм и метасоматические породы / В.А. Жариков, В.Л. Русинов, А.А. Маракушев и др. М.: Научный мир, 1998. 492 с.

Заботина М.В., Паленова Е.Е, Юминов А.М. Условия образования грейзенов на Коклановском месторождении вольфрама и молибдена (Курганская область) // Минералогия. 2015. № 3. С. 36-44.

Реддер Э. Флюидные включения в минералах: в 2-х т. Т. 1. Пер. с англ. М.: Мир, 1987. 560 с.

Справочник химика. Т. 1. М.: Госхимиздат, 1963. 356 с.

Ступак Д.Ф. Геологическое строение и условия формирования Шумиловского вольфрамового месторождения (Забайкалье, Россия). Автореф. дис. ... канд. геол.-минер. наук. М., 2010.

Cathelineau M. Cation site occupancy in chlorites and illites as a function of temperature // Clay Minerals. 1988. Vol. 23. P. 471–485.

https://kaztrade.ru/uploads/files/2019/04/26/tizer-drozhilovskoe 1556278823.pdf

Jowett E.C. Fitting iron and magnesium into the hydrothermal chlorite geothermometer // GAC/MAC/SEG Joint Annual Meeting. Toronto, May 27–29, 1991. Program with Abstracts. V. 16. A62.

Kranidiotis P., MacLean W.H. Systematics of chlorite alteration at the Phelps Dodge massive sulfide deposit, Matagami, Quebec // Economic Geology. 1987. Vol. 82. P. 1898–1911.

У.А. Ятимов^{1, 2}, Н.Н. Анкушева¹, Н.С. Сафаралиев³

¹– Южно-Уральский федеральный научный центр минералогии и геоэкологии УрО РАН, Институт минералогии, г. Миасс umed1990@list.ru ²– Южно-Уральский государственный университет, г. Челябинск

тожно-уральский государственный университет, г. Челмоинск ³ – Таджикский национальный университет, г. Душанбе

Условия образования руд сульфидно-магнетитового месторождения Акташ (Западный Карамазар, Таджикистан) по данным термобарогеохимии

(научный руководитель – член-корр. РАН В.В. Масленников)

Месторождение Акташ расположено в восточной части Кансайского рудного поля (Западный Карамазар, Таджикистан) на участке, ограниченном с юга Альпийским надвигом, на западе, севере и востоке – массивом гранитоидов Чокадамбулакского интрузива. Район Кансайского рудного поля находится в юго-западной части