32.43 мас. % Ce_2O_3 , 16.69-16.47 мас. % La_2O_3 и 11.78-12.52 мас. % Nd_2O_3 , а также отмечается обогащение Th (1.45–2.63 мас. % ThO₂). Циркон встречается в основной массе породы в виде хорошо ограненных тетрагонально-дипирамидальных кристаллов размером 5–20 мкм (рис. 2a, и).

Таким образом, геохимические особенности углеродистых сланцев Кумакского рудного поля указывают на мелководно-прибрежные обстановки накопления. Осадочный материал имел преимущественно терригенный источник и отлагался в окислительных и частично в субокислительных условиях. Нормирование к постархейскому австралийскому глинистому сланцу показывает, что РЗЭ в рассматриваемых породах минимальны, несмотря на присутствие в них монацита (-Ce) и рабдофана (-Ce), ксенотима (-Y).

Геологические работы выполнены в рамках государственного задания по теме № 0246-2019-0078. Изучение состава минералов проведено в рамках государственной бюджетной темы № AAAA-A19-119072390050-9.

Литература

Лощинин В.П., Панкратьев П.В. Золотоносность нижне-среднепалеозойских черносланцевых формаций Восточного Оренбуржья // Стратегия и процессы освоения георесурсов. Пермь: ГИ УрО РАН, 2006. С. 79-82.

Лядский П.В., Чен-Лен-Сон Б.И., Алексеева Г.А., Оленица Т.В., Кваснюк Л.Н., Мануйлов Н.В. Государственная геологическая карта Российской Федерации. Масштаб 1:200000. Издание второе. Серия Южно-Уральская. Лист М-41-I (Аниховка). Объяснительная записка. – М.: МФ ВСЕГЕИ, 2018. 100 с.

Сазонов В.Н., Коротеев В.А., Огородников В.Н., Поленов Ю.А., Великанов А.Я. Золото в «черных сланцах» Урала // Литосфера. 2011. № 4. С. 70–92.

Тейлор С.Р., Мак.Леннан С.М. Континентальная кора: ее состав и эволюция. М.: Мир, 1988. 384 с. *Холоднов В.Н., Наумов Р.И.* О геохимических критериях появления сероводородного заражения в водах древних водоемов // Известия АН СССР. Серия Геология. 1991. Т. 12. С. 74–82.

Юдович Я.Э., Кетрис М.П. Геохимия черных сланцев. М.-Берлин: Директ-Медиа, 2015. 272 с.

Jones B., Manning D.A.C. Comparison of geochemical indices used for the interpretation of paleoredox conditions in ancient mudstones // Chemical Geology. 1994. Vol. 111. P. 111–129.

Р.А. Гатауллин

Уфимский федеральный исследовательский центр РАН, Институт геологии, г. Уфа Башкирский государственный университет, г. Уфа rusgatln97@gmail.com

Минералого-геохимические особенности и условия образования лерцолитов массива Северный Крака, Южный Урал

(научный руководитель – д.г.-м.н. Д.Е. Савельев)

Массив Северный Крака расположен в Белорецком районе Республики Башкортостан. Он представляет собой тело размером 15×18 км (рис. 1), большую часть площади которого занимают шпинелевые лерцолиты, содержащие 60–80 % оливина, 20–30 % энстатита, 5–10 % диопсида и 1–5 % хромшпинелида. Среди них встречаются участки, сложенные шпинель-плагиоклазовыми лерцолитами, гарцбургитами и дунитами. Дунит-гарцбургитовый комплекс фрагментарно присутствует в краевых частях массива [Савельев и др., 2008].

Фактический материал для настоящей работы получен автором в ходе полевых исследований 2019–2020 гг. в составе отряда Института геологии УФИЦ РАН. Образцы перидоти-

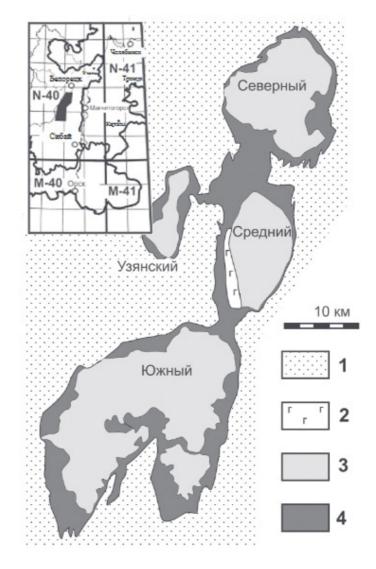


Рис. 1. Обзорная карта района массивов Крака [Савельев, 2018]. 1 — вмещающие породы; 2 — габбро, верлиты, клинопироксениты; 3 — хромшпинелевые перидотиты и дуниты; 4 — серпентиниты.

тов отпрепарированы и изучены методами оптической и электронной микроскопии, состав минералов определялся при помощи ЭДС на СЭМ Vega 3 Tescan sbh в ЦКП «Структурные и физико-механические исследования материалов» (ИПСМ РАН, г. Уфа).

Минералогия ультрамафитов типична для мантийных разрезов офиолитовых комплексов. Ортопироксены по химическому составу соответствуют энстатиту и эндиопсиду с малым содержанием волластонитового и ферросилитового миналов. Клинопироксены соответствуют эндиопсиду и диопсиду, доля волластонитового минала варьирует между 0.25 и 0.5 (рис. 2a).

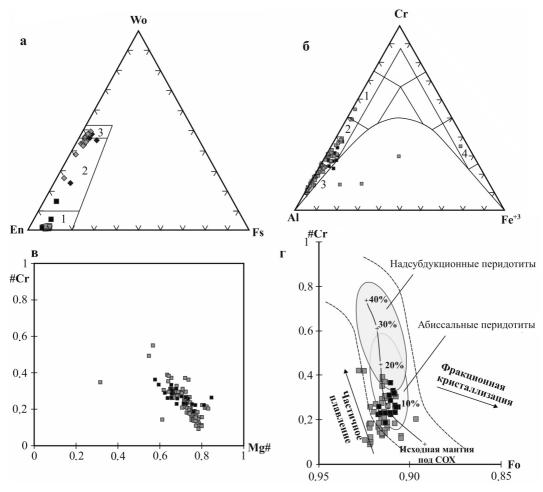


Рис. 2. Диаграммы составов минералов массива Северный Крака: а) диаграмма миналов пироксенов (En – $MgSiO_3$, Wo – $CaSiO_3$, Fs – $FeSiO_3$): светлые квадраты – фигуративные точки ортопироксенов лерцолитов, темные квадраты – ортопироксены шпинель-плагиоклазовых лерцолитов, светлые ромбы – клинопироксены плагиоклазовых лерцолитов; поля даны по [Добрецов и др., 1971]: 1 – энстатит, 2 – энстатит-диопсид, 3 – диопсид; б) классификационная диаграмма состава трехвалентных катионов хромшпинелидов [Павлов, 1949]; поля: 1 – алюмохромит, 2 – хромпикотит, 3 – пикотит, 4 – хроммагнетит; в) диаграмма для хромшпинелидов в координатах $\#Cr=Cr/(Cr+Al+Fe^{3+})$ — $\#Mg=Mg/(Mg+Fe^{2+})$, атомные количества; г) диаграмма оливин-шпинелевой мантийной ассоциации: #Cr – $Cr/(Cr+Al+Fe^{3+})$ в хромшпинелиде, Fo – доля форстеритового минала в соответствующем ему зерне оливина; пунктир – границы поля составов минералов, образующихся при частичном плавлении мантийного субстрата (FMM); стрелки – направления трендов, характерных для кристаллизационной дифференциации и частичного плавления; поля даны по [Arai, 1994].

На рис. 2a—в светлые квадраты – точки хромшпинелидов из лерцолитов, темные квадраты – хромшпинелид из шпинель-плагиоклазовых лерцолитов.

Хромшпинелиды лерцолитов характеризуются значительными вариациями содержаний Al_2O_3 и Cr_2O_3 (рис. 26) и содержат низкие концентрации Fe_2O_3 . Большинство из них относятся к глиноземистым разновидностям — хромпикотиту и пикотиту, незначительное количество — к алюмохромиту и хроммагнетиту. Примеси Zn, Mn, V и Ti отмечаются в единичных анализах. Более частая примесь Ni выше предела обнаружения содержится примерно в 18 % ана-

Оценка температур образования лерцолитов по оливин-шпинелевым геотермометрам

Образец	α	β	γ	$X_{mg \ ol}$	$X_{mg \ sp}$	f»	Fa	lnK _D	Cr#Al	Оно	Фабри	Среднее
Лерцолиты												
Сек-2182	0.161	0.825	0.014	0.915	0.768	0.232	0.085	1.177	0.164	646	721	683
Сек-2153	0.186	0.804	0.010	0.917	0.744	0.256	0.083	1.334	0.188	586	678	632
Сек-2152	0.373	0.595	0.031	0.915	0.644	0.356	0.085	1.780	0.386	710	773	741
Сек-2183	0.222	0.753	0.025	0.914	0.744	0.256	0.086	1.296	0.228	706	757	731
Сек-2152-1	0.291	0.701	0.009	0.915	0.707	0.293	0.085	1.489	0.293	672	723	698
Сек-2191	0.182	0.802	0.016	0.920	0.743	0.257	0.080	1.379	0.185	553	655	604
CeK-2193	0.192	0.789	0.019	0.910	0.757	0.243	0.090	1.182	0.196	714	757	735
Сек-2174	0.153	0.826	0.021	0.915	0.756	0.244	0.085	1.245	0.156	580	678	629
Сек-1771а	0.275	0.678	0.048	0.909	0.649	0.351	0.091	1.691	0.288	590	673	631
CeK-2221	0.365	0.607	0.028	0.957	0.729	0.271	0.043	2.115	0.376	508	590	549
CeK-2245	0.110	0.880	0.010	0.925	0.800	0.200	0.075	1.122	0.111	571	683	627
СеК-2247-1	0.149	0.842	0.008	0.914	0.763	0.237	0.086	1.190	0.151	608	700	654
СеК-2244	0.114	0.877	0.008	0.922	0.789	0.211	0.078	1.146	0.115	563	677	620
CeK-2264	0.271	0.714	0.015	0.919	0.682	0.318	0.081	1.660	0.275	557	642	599
СеК-2161-1	0.121	0.863	0.015	0.905	0.784	0.216	0.095	0.960	0.123	744	788	766
Шпинель-плагиоклазовые лерцолиты												
Сек-2176	0.334	0.626	0.040	0.909	0.594	0.406	0.091	1.923	0.348	544	617	580
Сек-2177	0.330	0.646	0.024	0.909	0.657	0.343	0.091	1.654	0.338	648	698	673
Сек-2166	0.302	0.674	0.024	0.910	0.708	0.292	0.090	1.382	0.309	897	819	858
Сек-2160	0.226	0.758	0.015	0.916	0.752	0.248	0.084	1.270	0.230	704	749	727
Сек-2178	0.266	0.684	0.050	0.909	0.677	0.323	0.091	1.544	0.280	655	693	674

Примечание. α, β, γ – доли Cr, Al и Fe среди трехвалентных катионов шпинели, соответственно; $X_{mg \ ol}$ и Fa – доли Mg и Fe среди двухвалентных катионов оливина: форстеритовый и фаялитовый миналы, соответственно; $X_{mg \ sp}$ и f» – доли Mg и Fe среди двухвалентных катионов шпинели, соответственно; $\ln K_D - X_{mg \ ol} \cdot \text{fb/} X_{mg \ sp} \cdot \text{Fa}$; Cr#Al – отношение Cr к сумме Cr и Al в хромшпинелиде. Оно и Фабри – оценки температур по геотермометрам $T(^{\circ}C) = [10000 \cdot (0.057 + 0.34 \cdot \text{Cr#Al})]/(\ln K_D + 0.934 \cdot \text{Cr \# Al} - 0.102) - 273 + kX_{Ti} [\text{Ono, 1983}]$ и $[(4250\alpha + 1343)/(\ln K_D + 1.825\alpha + 0.571)] - 273 + kX_{Ti} \cdot \text{где kX}_{Ti} - атомное количество Ti [Fabries, 1979], <math>^{\circ}C$, соответственно.

лизов. Попадание некоторых фигуративных точек в зону несмесимости (нижняя часть треугольной диаграммы под «параболой»), скорее всего, объясняется тем, что химический состав анализировался на участках тесного срастания первичной шпинели с хроммагнетитом. На бинарной диаграмме #Cr—#Mg (рис. 2в) отчетливо видна зависимость уменьшения магнезиальности хромшпинелидов с ростом их хромистости. Вариации содержаний MgO и FeO не столь значительны – в пределах 0.5–0.7 #Mg.

Для оценки влияния процессов частичного плавления мантийного субстрата или кристаллизационной дифференциации на образование перидотитов обычно применяется диаграмма оливин-шпинелевой мантийной ассоциации (OSMA) [Arai, 1994]. При ее построении используются данные по химическому составу сосуществующих зерен оливина и хромшпинелида. Большинство фигуративных точек для сосуществующих зерен оливина и хромшпинелида на диаграмме OSMA (рис. 2г) попадают в поля частичного плавления мантийного субстрата и соответствуют степени частичного плавления менее 20 %.

Миасс: ЮУ ФНЦ МиГ УрО РАН

Для оценки температурных условий образования глубинных пород широко применяется сравнение химических составов сосуществующих минералов конкретного образца с экспериментальными данными по составам минеральных систем при определенных РТ условиях [Перчук, Рябчиков, 1976]. По химическому составу сосуществующих зерен оливина и хромшпинелида вычислены температуры установления химических равновесий в этих минералах. Температура окончания обменных реакций между оливином и хромшпинелидами лерцолитов по большинству пар находится в пределах 600–770 °С (табл.). Учитывая наличие петрографических свидетельств деформации зерен оливина и пироксенов [Савельев, 2018], можно утверждать, что в становлении пород значительную роль играли процессы пластической деформации в субсолидусных условиях.

Таким образом, проведенные исследования позволили выявить особенности состава минералов из перидотитов массива Северный Крака. Главным породообразующим минералом является высокомагнезиальный оливин (Fo₉₀₋₉₄), большинство исследованных зерен хромшпинелида относится к высокоглиноземистым разновидностям — пикотиту и хромпикотиту, пироксены по составу варьируют от энстатита до диопсида. Составы сосуществующих зерен оливина и хромпшинелида из лерцолитов соответствуют таковым, образующимся при низких степенях частичного плавления мантийного субстрата. По оценкам шпинель-оливиновой геотермометрии образование лерцолитов происходило при температурах 600—770 °C. Полученные низкие температуры свидетельствуют о длительном процессе установления химического равновесия для данных минералов в субсолидусных условиях.

Исследования выполнены в рамках темы государственного задания Минобрнауки $P\Phi$ (N 0246–2019–0078).

Литература

Добрецов Н.Л., Кочкин Ю.Н., Кривенко А.П., Кутолин В.А., Соболев В.С. Породообразующие пироксены. М.: Наука, 1971. 454 с.

Павлов Н.В. Химический состав хромшпинелидов в связи с петрографическим составом пород ультраосновных интрузивов // Тр. Ин-та геол. наук АН СССР. Вып. 103. Серия рудных месторождений. 1949. № 13. С. 10–35.

Перчук Л.Л., Рябчиков И.Д. Фазовое соответствие в минеральных системах. М.: Недра, 1976. 287 с. *Савельев Д.Е.* Ультрамафитовые массивы Крака (Южный Урал): особенности строения и состава перидотит-дунит-хромититовых ассоциаций. Уфа: Башкирская энциклопедия, 2018. 204 с.

Савельев Д.Е., Сначев В.И., Савельева Е.Н., Бажин Е.А. Геология, петрогеохимия и хромитоносность габбро-гипербазитовых массивов Южного Урала. Уфа: ДизайнПолиграфСервис, 2008. 320 с.

Arai S. Characterization of spinel peridotites by olivine-spinel compositional relationships: Review and interpretation // Chemical Geology. 1994. Vol. 113. P. 191–204.

Fabries J. Spinel-olivine geothermometry in peridotites from ultramafic complexes // Contributions to Mineralogy and Petrology. 1979. Vol. 69. P. 329–336.

Ono A. Fe-Mg partitioning between spinel and olivine // The Journal of the Japanese Association of Mineralogists, Petrologists and Economic Geologists. 1983. Vol. 78. P. 115–122.