Г.И. Ширяев, Г.Г. Борисова, М.Г. Малева

Институт естественных наук и математики, Уральский федеральный университет им. первого Президента России Б.Н. Ельцина, г. Екатеринбург, schiriaev.grisha@yandex.ru

ПРОДУКТЫ ПЕРЕКИСНОГО ОКИСЛЕНИЯ ЛИПИДОВ И НИЗКОМОЛЕКУЛЯРНЫЕ АНТИОКСИДАНТЫ В ЛИСТЬЯХ ГЕЛОФИТОВ КАК БИОМАРКЕРЫ ЗАГРЯЗНЕНИЯ ВОДНЫХ ОБЪЕКТОВ ТЯЖЕЛЫМИ МЕТАЛЛАМИ

Загрязнение окружающей среды тяжелыми металлами (ТМ) является распространенной проблемой, особенно актуальной для регионов с развитой промышленностью, таких как Урал. Действие ТМ на живые организмы нередко инициирует развитие окислительного стресса, что может привести к их гибели. Устойчивость растений в таких условиях зависит от адаптивных физиолого-биохимических реакций, связанных с активацией защитных систем организма, включая синтез низкомолекулярных компонентов антиоксидантной природы [Blokhina et al., 2003; Прадедова и др., 2011]. Исследование проводилось в зоне деятельности медеплавильного комбината АО «Карабашмедь» (г. Карабаш, Челябинская область). Предприятие оказывает сильное техногенное влияние как на наземные, так и на водные экосистемы. Наибольшее воздействие испытывает река Сак-Элга, являющаяся притоком р. Миасс, в которую поступают не только хозяйственно-бытовые воды города, но и стоки комбината. Значительная часть поллютантов поступает также аэротехногенным путем [Таций, 2012]. В конечном счете загрязненные воды поступают в Аргазинское водохранилище, которое используется в качестве источника питьевого водоснабжения.

Цель исследования – выявление наиболее репрезентативных физиолого-биохимических параметров, перспективных для использования в качестве биомаркеров токсичности, на основе изучения аккумулятивной способности и ответных реакций наиболее устойчивых к длительному техногенному воздействию видов гелофитов – *Phragmites australis* (Cav.) Trin. ex Steud., *Typha latifolia* L. и *Calla palustris* L.

Отбор проб вод, седиментов и растительного материала осуществляли на территории Челябинской области в июле 2016—2018 гг. на двух участках: р. Сак-Элга (импакт), на расстоянии 2.6 км от медеплавильного комбината, и о. Иртяш (фон), на расстоянии 55 км от данного предприятия. Содержание ТМ в воде, седиментах и растительном материале определяли методом атомно-эмиссионной спектрометрии с индуктивно связанной плазмой после мокрого озоления 70 % HNO3 (осч). Физиолого-биохимические характеристики, такие как содержание малонового диальдегида (МДА), каротиноидов, свободного пролина, небелковых тиолов и фенольных соединений, измеряли спектрофотометрически, согласно стандартным методам [Lichtenthaler, 1987; Singleton et al., 1999; Методы..., 2012]. В качестве показателя уровня загрязнения использовали суммарный индекс токсической нагрузки (S_i), рассчитанный по содержанию восьми металлов (Co, Pb, Ni, Cu, Zn, Mn, Cd и Fe) по формуле [Bezel et al., 1998]: $Si = (1/n) \Sigma (C_i/C\phioh)$, где Ci – концентрация металла в воде/седиментах фонового участка, n – число исследованных металлов.

Исследование показало, что в импактном участке происходило значительное загрязнение как поверхностных вод, так и седиментов (табл.). В наибольшем количестве в поверхностных водах содержались Сu, Zn и Mn, тогда как в седиментах еще и Fe. Для импактного участка были характерны низкое значение рH поверхностных вод и высокая электропроводность, которая была выше в 1.7 раза по сравнению с фоном (см. табл.). Как известно, в кислой среде увеличивается подвижность ТМ, в результате чего повышается их поступление в ткани растений [Li et al., 2015].

Значения индекса токсической на	грузки воды и седиментов,
рН и электропроводности воды і	на исследуемых участках

Точка отбора проб	$Si_{ m (вод.)}$	Si(сед.)	рН	Электропроводность, мкСи/см
Фон	1	1	6.9 ± 0.1	392.7 ± 33.2
Импакт	137	28	5.2 ± 0.2	656.7 ± 20.2

Накопление ТМ осуществлялось в основном корнями исследуемых гелофитов: коэффициент транслокации из корней в листья в большинстве случаев был меньше 1. Исключение составил Мп, который у *P. australis* и *T. latifolia* в максимальной степени накапливался в надземной части растений. Возможно, это связано с высокой подвижностью ионов марганца в растениях, которая была отмечена и другими авторами [Klink et al., 2013].

Образование активных форм кислорода (АФК), стимулируемое действием ТМ, может привести к развитию окислительного стресса, основным показателем которого является накопление продуктов перекисного окисления липидов (ПОЛ). Одним из продуктов ПОЛ является МДА; по его содержанию принято судить об уровне окислительного стресса [Прадедова и др., 2011]. Несмотря на то, что исследуемые гелофиты депонировали значительные количества ТМ в корнях, было показано увеличение содержания МДА в листьях растений из импактного участка (в среднем в 1.7 раза, рис.). При этом содержание МДА у *С. palustris* было значительно выше, чем у *Р. australis* и *Т. latifolia* (в 3.3 и 1.9 раза, соответственно).

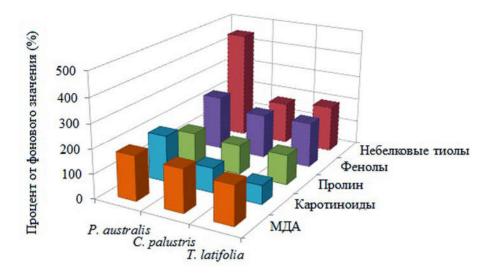


Рис. Содержание малонового диальдегида (МДА) и низкомолекулярных антиоксидантов в листьях трех видов гелофитов в импактном участке. Данные выражены в процентах от фоновых значений (фон = 100 %).

Одним из главных неспецифических ответов на окислительный стресс у растений является активация синтеза низкомолекулярных антиоксидантов. К ним относят вещества различной природы, часто выполняющие в растениях и другие важные функции, помимо антиоксидантной [Blokhina et al., 2003; Прадедова и др., 2011]. Например, каротиноиды являются не только вспомогательными фотосинтетическими пигментами (антенная функция), но и могут восстанавливать АФК за счет двойных связей, тем самым защищая хлорофиллы от фотоокисления [Gruszecki et al., 2014]. У *P. australis* содержание каротиноидов в листьях увеличивалось в 2 раза, тогда как у *T. latifolia* снижалось в 1.3 раза, а у *C. palustris* существенно не изменялось. При этом содержание каротиноидов в фоновом участке у *P. australis* было ниже, чем у других видов (в среднем в 1.7 раза). Возможно, активизация их синтеза в импактном участке у *Р. australis* связана с их антиоксидантной ролью.

Особую роль в защите растений от различных стрессовых факторов играет пролин. Он участвует не только в осморегуляции, но и является важным компонентом антиоксидантной системы, хелатируя ТМ и участвуя в нейтрализации АФК [Hare, Cress, 1997]. У всех трех гелофитов в импактном участке количество пролина в листьях увеличивалось в среднем в 1.3 раза. При этом в наибольшем количестве пролин содержался у *P. australis* (0.8 мг/г сухой массы), а в наименьшем – у *С. palustris* (0.4 мг/г сухой массы). Увеличение содержания пролина у растений, испытывающих окислительный стресс, показано многими авторами и является одним из наиболее универсальных ответов растений на окислительный стресс [Nayeka et al., 2010].

Фенольные соединения играют важную роль в нейтрализации АФК и хелатировании ТМ за счет гидроксильных групп, а также стабилизируют мембраны, снижая диффузию свободных радикалов в клетки [Kostyuk et al., 2004]. В импактном участке у исследуемых видов обнаружено достоверное увеличение количества фенольных соединений (в среднем в 2.0 раза). При этом содержание фенольных соединений у *T. latifolia* и *C. palustris* было в 1.5 раза выше, чем у *P. australis* (117.8 мг/г сухой массы). Данный результат согласуется с литературными данными, в которых указывается, что у многих растений, устойчивых к действию стрессовых факторов, наблюдается значительное накопление фенольных соединений [Michalak, 2006].

Известно, что небелковые тиолы (в частности, глутатион) содержат SH-группы, за счет которых могут как непосредственно хелатировать ТМ, ингибируя тем самым синтез АФК, так и участвовать в их нейтрализации [Hernandez et al., 2015]. В импактном участке содержание небелковых растворимых тиолов у *P. australis*, *T. latifolia* и *C. palustris* увеличивалось в 4.5, 1.9 и 1.7 раза соответственно. При этом содержание небелковых тиолов у *P. australis* в импактном участке (0.7 мкМ/г сухой массы) было ниже, чем у других гелофитов (в среднем в 1.8 раз).

Таким образом, можно сделать вывод о том, что у всех изученных гелофитов длительное техногенное воздействие вызывало окислительный стресс. При этом, благодаря активизации синтеза низкомолекулярных антиоксидантов, они сохраняли свою жизнеспособность в экстремальных условиях загрязнения. Исследование показало, что такие параметры, как содержание МДА, пролина, небелковых тиолов и фенольных соединений, можно рекомендовать в качестве биомаркеров токсической нагрузки.

Работа выполнена при финансовой поддержке Министерства науки и высшего образования $P\Phi$ (соглашение № 02.A03.21.0006).

Литература

Методы оценки антиоксидантного статуса растений: уч.-метод. пособие. Екатеринбург: Изд-во Урал. ун-та, 2012. 72 с.

Прадедова Е.В., Ищеева О.Д., Саляев Р.К. Классификация системы антиоксидантной защиты как основа рациональной организации экспериментального исследования окислительного стресса у растений // Физиология растений. 2011. Т. 58. № 2. С. 177–185.

Таций Ю.Г. Эколого-геохимическая оценка загрязнения окружающей среды в зоне действия Карабашского медеплавильного комбината // Вестник ТюмГУ. Экология и природопользование. 2012. № 12. С. 90–96.

Bezel V.S., Zhuikova T.V., Pozolotina V.N. The structure of dandelion cenopopulations and specific features of heavy metal accumulation // Russian Journal of Ecology. 1998. V. 29. No 5. P. 331–337.

Blokhina O., Virolainen E., Fagerstedt K.V. Antioxidants, oxidative damage and oxygen deprivation stress: a review // Annals of Botany. 2003. V. 91. No 2. P. 179–194.

Gruszecki W., Szymanska R., Fiedor L. Carotenoids as photoprotectors // In: Photosynthetic pigments: chemical structure, biological function and ecology. Ed. by T.K. Golovko, W.I. Gruszecki, M.N.V. Prasad, K.J. Strzalka. Syktyvkar, 2014. P. 161–170.

Hare P.D., Cress W.A. Metabolic implications of stress-induced proline accumulations in plants // Plant Growth Regulations. 1997. No 21. P. 79–102.

Hernandez L.E., Sobrino-Plata J., Montero-Palmero M.B., Carrasco-Gil S., Flores-Caceres M.L., Ortega-Villasante C., Escobar C. Contribution of glutathione to the control of cellular redox homeostasis under toxic metal and metalloid stress // Journal of Experimental Botany. 2015. V. 66. No 10. P. 2901–2911.

Klink A., Macioł A., Wisłocka M., Krawczyk J. Metal accumulation and distribution in the organs of *Typha latifolia* L. (cattail) and their potential use in bioindication // Limnologica. 2013. V. 43. No 3. P. 164–168.

Kostyuk V.A., Potapovich A.I., Strigunova E.N., Kostyuk T.V., Afanas'ev I.B. Experimental evidence that flavonoid metal complexes may act as mimics of superoxide dismutase // Archives of Biochemistry and Biophysics. 2004. V. 428. No 2. P. 204–208.

Lichtenthaler H.K. Chlorophylls and carotenoids: pigments of photosynthetic membranes // Methods in Enzymology. 1987. V. 148. P. 350–382.

Li J., Yu H., Luan Y. Meta-analysis of the copper, zinc, and cadmium absorption capacities of aquatic plants in heavy metal-polluted water // International Journal of Environmental Research and Public Health. 2015. V. 12. No 12. P. 14958–14973.

Michalak A. Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress // Polish Journal of Environmental Studies. 2006. V. 15. P. 523–530.

Nayeka S., Gupta S., Saha R. Effects of metal stress on biochemical response of some aquatic macrophytes growing along an industrial waste discharge channel // Journal of Plant Interactions. 2010. V. 5. No 2. P. 91–99.

Singleton V.L., Orthofer R., Lamuela-Raventos R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent // Methods in Enzymology. 1999. V. 299. P. 152–178.