Чугунов К.В. Аржан-1 и Аржан-2: сравнительный анализ // Наследие народов Центальной Азии и сопредельных территорий: изучение, сохранение и использование. Мат-лы конф. в 2-х частях. Часть 1. Кызыл: КЦО «Аныяк», 2009. С. 48–52.

Чугунов К.В. Культурные связи населения Тувы в раннескифское время (по материалам кургана Аржан-2) // Маргулановские чтения-2011. Астана: ЕНУ им. Л.Н. Гумилева. 2011а. С. 177–182.

Чугунов К.В. Искусство Аржана-2: стилистика, композиция, иконография, орнаментальные мотивы // Европейская Сарматия. СПб: Нестор-История, 2011б. С. 39–60.

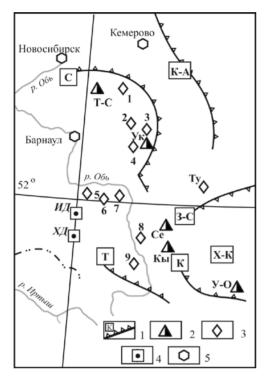
Čugunov K., Parzinger H., Nagler A. Der skythenzeitliche Fürstenkurgan Aržan 2 in Tuva. Archäologie in Eurasien 26. Steppenvölker Eurasiens 3. Mainz: Verlag Philipp von Zabern, 2010. 330 S.

В.В. Зайков ¹, А.И. Гусев ², П.К. Дашковский ³, Е.В. Зайкова ¹– Институт минералогии Уро РАН, zaykov@mineralogy.ru

² – Алтайская государственная академия образования,

³ – Алтайский государственный университет

О возможных источниках платиноидов в древних золотых изделиях Алтая


При исследовании древних золотых изделий из могильника Ханкаринский Дол выявлены микровключения платиноидов [Дашковский, Юминов, 2013]. Позднее они были обнаружены в могильнике Инской Дол. Микровключения представлены твердыми растворами Os-Ir-Ru. Авторы сопоставили сведения о микровключениях с данными о платиноидах в россыпях Алтая [Гусев, 2011; Гусев, Кукоева, 2011]. Позиция мест находок платиноидов показана на рис. 1.

Состав и номенклатура платиноидов определялись по соотношению Os, Ru, Ir в кристаллохимических формулах [Harris, Cabri, 1991] с помощью соответствующей тройной диаграммы. Наименование минерала определялось по превалирующему элементу в кристаллохимической формуле, указание разности — по подчиненным элементам (в порядке возрастания) и примесям. Пробность золота рассчитывалась по отношению концентраций золота к сумме всех компонентов, умноженному на 1000 и измерялась в промилле (‰).

Платиноиды в археологических памятниках

Могильник Ханкаринский Дол (Чинетский археологический микрорайон Алтая). В кургане № 15 при раскопках найдены предметы из золота: золотая обкладка гривны, зооморфные аппликации, нашивка и окантовка из фольги женского головного убора, восьмеркообразная проволочная серьга. Курган относится к пазырыкской культуре и датирован по признакам погребального обряда IV – началом III вв. до н.э. [Дашковский, Усова, 2007]. Золотые изделия имеют состав (мас. %): Au 69.50–72.05, Ag 23.94–26.25, Cu 2.85–4.26.

При исследовании золотой фольги в шести изделиях были выявлены 9 включений платиноидов размером от 2 до 10 мкм удлиненной, близкой к линзовидной,

Puc. 1. Схема расположения коренных и россыпных проявлений платиноидов в Алтае-Саянском регионе.

1) глубинные разломы с массивами платиноносных гипербазитов (С — Салаирский, К-А — Кузнецко—Алатуский, В-С — Восточно—Саянский, Т — Теректинский, З-С — Западно—Саянский, К — Курайский, Х-К — Хемчикско-Куртушибинский, Кх — Каахемский; А — Агардагский; 2) коренные проявления платиноидов в хромитовых рудах гипербазитовых массивов (ТС- Тогул-Сунгайское, Ук — Уксунайское, Се — Сеглебирское, Кы — Кыркылинское, У-О — Узун-Оюкское

Проявления платиноидов в россыпях: 1 – Таловское, 2 – Суенга, 3 – Иродов Лог, 4 – Большая Иониха, 5 – Николаевка, 6 – Ерусалимское, 7 – Светлая, 8 – Аксагысканская, 9 – Каянча.

формы (табл. 1). По атомному соотношению Os, Ru, Ir, Rh в кристаллохимических формулах выделяются три минерала:

- 1) с преобладанием осмия: Xa-15-8; Xn-11-2; Xn-18 осмий рутениевоиридиевый с небольшим количеством платины и родия;
- 2) с преобладанием рутения рутений иридиево-осмиевый и небольшим количеством платины и родия (ХД-15-2-1; ХД-15-2-2; Ха-15-7); рутений осмиево-иридиевый с небольшим количеством платины (Ха-15-1а);
- 3) с преобладанием иридия иридий осмиевый и рутениево-осмиевый (Ха-15-16; Ха-15-6).
- В кургане № 15 фольга содержит микровключение осмия рутниевоиридиевого (микровключение Xn-25). Вмещающее золото имеет состав (мас. %): Au 53.54; Ag 44.06; Cu 2.26.

Могильник Инской Дол также располагается в пределах Чинетского археологического микрорайона. По признакам погребального обряда и инвентаря исследованные курганы №1-2 датированы IV – началом III вв. до н.э.

В кургане № 2 зафиксирована деревянная конструкция из плах. В могиле выявлено погребение человека, уложенного в скорченном положении на правом боку и ориентированного головой на восток, а также сопроводительное захоронение лошади вдоль северной стенки могилы. В могиле обнаружены керамический сосуд, железный нож, деревянная гривна, обложенная золотой фольгой, сильно корродированный железный предмет и многочисленные фрагменты золотой фольги от головного убора.

Таблица 1

Состав микровключений осмия в золотых изделиях из курганов раннего железного века Сибири

	Состав микровключений осмия в золотых изделиях из курганов раннего железного века Сибири										
No	Могильник,		№ зер-	К-	Содержания, мас. %						Кристаллохимические
п/п	курган	Изделия	на	во	Os	Ir	Ru	Rh	Pt	Fe	формулы минералов
1.		Фольга обкладки	Xa-15-1a	ан. 3	32.24	37.71	24.68	_	5.12	_	$\frac{\text{Ru}_{0.38} \text{Ir}_{0.31} \text{Os}_{0.27} \text{Pt}_{0.04}}{\text{Ru}_{0.38} \text{Ir}_{0.31} \text{Os}_{0.27} \text{Pt}_{0.04}}$
2.	Ханкаринский Дол, К. №15	гривны	Ха-15-1б	3	42.12	46.71	10.68	_	_	_	$Ir_{0,43} Os_{0,39} Ru_{0,18}$
3.		Аппликация с головного убора	XD-15-2-1	4	59.03	1.94	37.14	_	_	_	$Ru_{0,53}Os_{0,44}Rh_{0,02}Ir_{0,01}$
4.			XD-15-2- 2	5	39.84	34.47	22.19	1.09	2.15		$Ru_{0,35}Os_{0,33}Ir_{0,28}Pt_{0,02}Rh_{0,02}$
5.		Фольга с окантов- ки головного убора	Xa-15-6	1	17.28	82.17	_	_	_	_	$Ir_{0,82}Os_{0,18}$
6.	A000, 10. V.=10		Xa-15-7	1	35.75	30.17	30.24	ı	3.03	_	Ru _{0,45} Os _{0,29} Ir _{0,24} Pt _{0,02}
7.		Золотая нашивка на воротник	Xa-15-8	1	45.71	39.83	9.65	ı	4.41	ı	$Os_{0,42} Ir_{0,37} Ru_{0,17} Pt_{0,04}$
8.		Фольга с головно- го убора	Xn-11-2	5	62.09	31.87	5.25	0.09	0.00	0.28	$Os_{0.59}Ir_{0.30}Ru_{0.10}Fe_{0.01}$
9.	Ханкаринский Дол, К. №15	- "-	Xn-18	4	50.02	41.43	7.70	0.50	0.00	0.15	$Os_{0.47}Ir_{0.38}Ru_{0.14}Rh_{0.01}$
10.	Ханкаринский Дол, К. №22	Фольга	Xn-25	3	65.79	26.07	7.42	0.29	0.00	0.16	$Os_{0.62}Ir_{0.24}Ru_{0.13}Rh_{0.01}$
11.		Фольга	In-3-1	1	22.12	69.42	0.92	0.68	2.93	3.32	$Ir_{0.63}Os_{0.21}Fe_{0.10}Pt_{0.03}Ru_{0.02}Rh_{0.01}$
12.	K No1		In-3-2	3	33.58	58.41	1.42	0.55	1.78	4.10	$Ir_{0.52}Os_{0.30}Fe_{0.13}Ru_{0.02}Pt_{0.02}Rh_{0.01}$
13.			In-3-3	1	39.70	34.55	20.85	1.29	2.93	0.31	$\begin{array}{l} Os_{0.33}Ru_{0.33}Ir_{0.29}Pt_{0.02} \\ Rh_{0.02}Fe_{0.01} \end{array}$
14.	Инской Дол, К. №2	Фольга с головно- го убора	In-4	1	50.22	33.19	13.07	1.61	1.73	_	$Os_{0.45}Ir_{0.29}Ru_{0.22}Rh_{0.03}Pt_{0.01}$
15.		Золотая нашивка	ID-5	6	51.74	37.47	8.63	0.81	0.81	0.26	$Os_{0,48}Ir_{0,34}Ru_{0,15}Rh_{0,02}Pt_{0,01}Fe_{0,01}$
16.		_ "_	ID-8	1	51.92	38.76	7.86	0.39	_	_	$Os_{0,49}Ir_{0,36}Ru_{0,14}Rh_{0,01}$

Примечания: 1) материал из раскопок П.К. Дашковского, 2) анализы выполнены в Южно-Уральском центре коллективного пользования на электронном микроскопе РЭММА 202 М (аналитик В.А. Котляров).

В фольге из кургана № 2 состава (мас. %): Au 57–60, Ag 36–39, Cu 3 присутствуют овальные микровключения платиноидов размером от первых до 80×120 мкм. Среди них установлены минералы осмия и иридия:

осмий иридиево-рутениевый с родием и платиной (In-3-3, In-4);

иридий рутениево-осмиевый с небольшим количеством родия и платины (In-3-1, In -3-2).

В кургане № 2 в золотой фольге найдены включения осмия рутениевоиридиевого с примесью родия и платины (In-4; ID-5; ID-8). Состав вмещающего золота (мас. %): Au 61-64; Ag 32-33; Cu 3.

Платиноиды в россыпных месторождениях золота

Россыпные месторождения золота с известной пробностью металла показаны в табл. 2. Часть из них включает платиноиды в россыпных зонах Салаирской и Синюхинской. Они приурочены к Салаирскому разлому и области сочленения Теректигского и Западно-Саянского разломов (см. рис. 1). Сведения о россыпях исследуемого района даны в табл. 2.

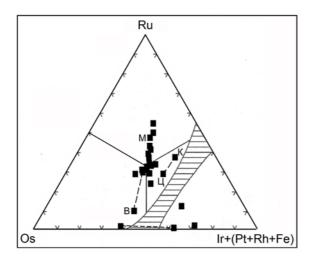
Россыпь р. Суенга расположена в северной части Салаирской зоны [Толстых и др., 1999]. Минералы осмия представлены кристаллами и их обломками размером менее 2 мм, в некоторых присутствуют включения лаурита. Фигуративные точки составов большинства зерен образуют рутениевый тренд в центральной части диаграммы, лишь малая часть принадлежит иридию (рис. 2).

Таловская россыпь расположена в долине одноименной реки, левого притока р. Степной Аламбай. Золотоносными являются отложения первой (высотой 1.22 м) и третьей (высотой 15 м) надпойменных террас. Протяженность продуктивных отрезков долины 0.5 и 1.5 км, средняя ширина 50−60 м. В отработанной части россыпи золото крупное, слабоокатанное, часто в срастании с кварцем. Встречались самородки весом до 600 г. Содержание золота составляло от 2 до 7 г/м³ песков. По данным Л.В.Агафонова, А.С.Борисенко, Н.П.Бедарева в шлихах было зафиксировано 2 зерна минералов ЭПГ. Одно из них представлено сростком биотита с рутениридосмином, содержащим заметное количество платины (мас. %) (Pt 3.83, Ir 13.27, Os 43.46, Ru 38.76, Rh 0.33). Другое зерно имело сложное зональное строение, обусловленное пятнистым распределением фазы, состоящей из изоморфной смеси RuS₂, OsS₂ с примесью IrS₂. Матрица зерна сложена лауритом. Пробность золота − 940 ‰.

Россыпь р. Большая Иониха. Известно два участка россыпи – в 2 км выше с. Иониха и у бывшего пос. Приисковский. Первый из них имел протяженность 2.5– 3.0 км с содержаниями золота до $30~\text{г/м}^3$. Длина второго составила 1.3~км, ширина – 25~м, средняя мощность песков – 0.63~м, среднее содержание золота – $1.6~\text{г/м}^3$. Распределение золота в пласте равномерное, из примесей в небольших количествах установлена платина и осмистый иридий. В районе выхода серпентинитов количество минералов платиновой группы в россыпи составляло около 20~% от количества золота

Россыпь руч. Иродов Лог аллювиальная долинная. Длина россыпи более 2 км, ширина -8-12 м. Плотик неровный, сложен ортосланцами, диоритами, серпентинитами. Содержание золота в песках составляло до $1.5 \, \text{г/м}^3$. Золото крупное, слабоокатанное, пористое, иногда ветвистое, нередко в сростках с кварцем или в лимонитовой «рубашке», часто отмечались самородки весом от $400 \, \text{г}$ до $1.8 \, \text{кг}$. По архивным дан-

 Таблица 2


 Золотые россыпи западной части Алтае-Саянского региона

№ пп	Россыпная зона, узел	Россыпь	Добыто золота, т	Пробность	Группа состава
1111		Таловка	0.47	940	II
I	Салаирская	Иродов лог		920	II
	F	Бол. Иониха		935	II
		Кельбесская		740 810	IV III
	Золото-Китатская	Камжелинская		850 940	III
II		Беренджак		783 865	IV III
		Ипчул	28.5	825 960	III II
		Бизы		825 950	III II
		Федоровская		788 828	IV III
	Мрасский	Мрассу		850 950	III II
		Унзас		870	III
		Быстрая		800 990	III II
		Дрезвочитная		836	III
		Карема		874	III
III		Теба		850	III
		Заслонка		890	III
		Ортон		930	II
		Малый Ортон		950	II
		Колосс		900	II
		Бол. Унзас		910	II
		Хомутовка		900	II
		Чугуна	1.5	890	III
IV	Чугунинский	Чулта	0.3	890	III
		М. Король	0.01	900	II
	Сийская	Сия	0.23	935	II
V		Б. Ключ	0.19	930	II
*		Каменная Сия	0.05	946	II
		Ушперек	0.21	915	II
				680	IV
		Семеновская	0.45	810	III
				980	II
VI	Каурчакская	Каурчакская	1.20	884 907	III II
		Андоба	2.40	905	II
		Чаныш	0.87	913	II

Окончание таблицы 2

№ пп	Россыпная зона, узел	Россыпь	Добыто золота, т	Пробность	Группа состава
		Манык	0.20	900	II
		Светлая	0.06	932	II
		Николаевка	0.02	933	II
VII	Синюхинский	Ушпа	0.43	900 950	II
		Сегилек 0.12		900 950	II
		Синюха	0.45	915 998	II I
		Косоворотская	0.06	912	II
		Копыловская	0.08	914	II
	Солонешенский	Ануй	0.40	836	III
VIII		Карама	0.04	874 948	III II
		Клык	0.20	900	II
		Чуйка	0.30	910	II
		Красноярская	0.10	937	II
	Кумирский	Кытма	0.10	954	II
				510 605	V
IX		Конопка		700 915	IV II
		Харальская		560 760	V IV
		1 Tap will be then		950	II

Примечания: 1) таблица основана на данных А.А. Геращенко [2000], А.И. Гусева [2011] 2) жирным шрифтом выделены россыпи, в которых обнаружены зерна платиноидов; 3) группы золота по пробности (‰): I – 1000–970, II —969–900, III – 899–800, IV – 799–650, V – 649–400.

Puc. 2. Состав Os-Ir-Ru твердых растворов в системе Os—Ru—Ir+(Pt + Rh + Fe), россыпь р. Суенга, Салаир.

Заштриховано поле несмесимости между гексагональными и кубическими фазами; штриховыми линиями соединены составы сосуществующих фаз или разных точек зонального кристалла. Значками обозначены: Ц — центр, К — край, М — матрица рутения, В — включение осмия [Толстых, 1999].

ным при отработке россыпи встречались платина и осмистый иридий, размеры добычи которых неизвестны. По данным Л.В.Агафонова, А.С.Борисенко, Н.П.Бедарева и др., в шлихах из Иродова Лога обнаружены минералы, представленные гексагональными твердыми растворами системы Os-Ru-Ir. Большинство их относится к рутениридосминам и только единичные зерна по составу отвечают самородному осмию и иридосмину. В одном из зерен рутениридосмина встречены закономерно-ориентированные, вытянутые в одном направлении, включения туламинита, несколько обогащенного никелем, указывающим на изоморфизм между туламинитом и ферроникельплатиной.

Россыпь р. Николаевка, левого притока р. Баранча аллювиальная долинная. Выделено два обособленных участка россыпи. Нижний участок начинается от устья долины, где он сочленяется с россыпью р. Баранча, протягивается на 1.2 км вверх при средней ширине 22 м. Содержания золота варьируют от первых десятых долей до 2.9 г/м³ при единичных значениях до 5 г/м³. Золото окатанное, полуокатанное и слабоокатанное; 80 % металла приходится на фракцию +1.0 мм. Верхний участок россыпи начинается в 0.6 км выше устья кл. Ерусалимского и прослеживается на 1.1 км вверх по течению при средней ширине 24 м. Золото окатанное и полуокатанное. Наряду с золотом встречаются осмистый иридий (на 1 кг золота 1−2 г осмистого иридия) и весовые содержания хромита. Средняя пробность золота − 933 ‰.

Россыпь кл. Ерусалимского – правого притока р. Николаевка, аллювиальная долинная. Характеризовалась высокими содержаниями и крупным золотом. Протяженность россыпи – 0.7 км, средняя ширина – 20 м. В единичных выработках содержания металла достигали 3–5 г/м 3 . Золото россыпи повышенной крупности, пробность 960 ‰, окатанность низкая.

Россыпь р. Светлой – левого притока р. Баранча. Россыпь с промышленными содержаниями начинается от устья долины, где она сочленяется с россыпью р. Баранча и протягивается на расстояние в 5.4 км при ширине до 60 м и пережимами до 10 м. Верхняя часть россыпи характеризуется высокими содержаниями фракции +1.0 мм, составляющими от 63 до 95 %; фракции +0.56 и +0.28 мм в сумме имеют здесь резко подчиненные значения в количестве 5–18 %. На нижнем участке россыпи преобладает золото классов крупности +0.56 мм и +0.28 мм, составляющих соответственно 42 и 30 %, при содержании фракции +1.0 мм 20–33 %. Золото крупностью +0.1 мм отмечается в количестве до 5 %. Встречались самородки весом до 30–64 г в сростках с кварцем. Средняя пробность золота в россыпи р. Светлой составляет 931 %. Кроме золота, отмечались непромышленные содержания осмистого иридия и весовые значения хромита.

Обсуждение результатов

В археологических памятниках на территории России микровключения платиноидов впервые были выявлены при изучении золотых изделий из могильников Кичигино I, Степное и Филипповка I в 2008 г. [Зайков и др., 2008; Shemakhanskaya et al., 2009]. Первый анализ распространения этих минералов в уральских артефактах был выполнен в работе «Осмиевый след по минеральным включениям в древних золотых изделиях» [Зайков и др., 2010]. Была определена связь платиноидов с россыпями золота, приуроченными к массивам гипербазитов. Сделанный тогда вывод о возможности выявления микровключений осмия в артефактах Сибири подтвердился последующими исследованиями [Дашковский, Юминов, 2012].

В Алтае-Саянском регионе каркас из платиноносных гипербазитовых зон разделяет блоки земной коры южнее Сибирской платформы [Пинус и др., 1958]. Могильники Ханкаринский Дол и Инской Дол располагаются на продолжении зоны Териктигского разлома, вмещающего гипербазиты (см. рис. 1). В 150 км восточнее могильников выявлено Каянчинское проявление хромитов с платиноидной минерализацией в виде вкрапленности осмия размером до 0.5 мм [Гусев, Кукоева, 2011]. Западнее этого участка распространены россыпи золота по рекам Карама, Ерусалим, Баранча, содержащие платиноиды.

Таким образом, на территории Салаира и Алтая имеется много объектов, которые могли служить источниками золота с примесью платиноидов. Добытое золото поступало в местные ювелирные мастерские, где превращалось в украшения, содержащие микровключениями минералов платиновой группы. В дальнейшем эти драгоценности обнаруживали археологи при раскопках курганов. Сравнение изделий, содержащих и не содержащих платиноиды позволит выяснить дополнительные критерии для определения признаков импортных и местных изделий.

Авторы благодарят А.М. Юминова, В.А. Котлярова, О.Л. Бусловскую за помощь в подготовке статьи.

Исследования выполнены по госзаданию Минобрнауки (№ 33.264.2014к), а также поддержаны $P\Phi\Phi U$ (проект 15-05-00311).

Литература

Гусев А.И. Минерагения и полезные ископамые Алтайского Края. Бийск: АГАО им. В.М. Шукшина, 2011. 393 с.

Гусев А.И., Кукоева М.А. Платина и платиноиды в офиолитах Салаира, Алтая и Горной Шории // Успехи современного естествознания, 2011. № 11. С. 20–23.

Дашковский П. К., Усова И. А. Погребение пазырыкской культуры на могильнике Ханкаринский дол (Северо-Западный Алтай) // Археология, этнография и антропология Евразии, 2011. № 3 (47). С. 78–84.

Дашковский П.К., Юминов А.М. Включения минералов платиновой группы в золотых изделиях из могильника Ханкаринский дол (Алтай) // Вестник Новосибирского государственного университета. Серия: История, филология, 2012. Т. 11. Вып. 7. С. 50–55.

Зайков В.В., Таиров А.Д., Юминов А.М., Чурин Е.И., Котляров В.А. Состав золотых изделий из курганов Южного Урала // Ранние кочевники Волго-Уральского региона. Оренбург: ОГПУ, 2008. С. 46–49.

Зайков В.В., Зайкова Е.В., Котляров В.А. Осмиевый след по минеральным включениям в древних золотых изделиях. // Археология, этнография и антропология Евразии, 2010а, № 1 (41). С. 37—43.

Толстых Н.Д., Лапухов А.С., Кривенко А.П., Лазарева Е.В. Минералы элементов платиновой группы в золотоносных россыпях Северо-Западного Салаира // Геология и геофизика, 1999. Т. 40. № 6. С. 916–925.

Щербаков Ю.Г., Рослякова Н.В. Состав золотых изделий, источники металлов и способы их обработки // Феномен Алтайской мумии. Новосибирск: Изд-во ИАиЭ СО РАН, 2000. С. 179–187.

Harris D., *Cabri L.* Nomenclature of platinum-group-element alloys: review and revision // Can. Min., 1991. V. 29. P. 231–237.

Shemakhanskaya M., Treister M., Yablonsky L. The technique of gold inlaid decoration in the 5th-4th centuries BC: silver and iron finds from the earlier Sarmatian barrows of Filippovka, Southern Urals // Universitires de Rennes. ArchaeoScience № 33, 2009. P. 211–220.