ОСОБЕННОСТИ СОСТАВА И РАСПРЕДЕЛЕНИЯ КАТИОНОВ В МИНЕРАЛАХ ГРУППЫ БУСТАМИТА

Н. В. Щипалкина, И. В. Пеков, С.М. Аксенов, Р.К. Расцветаева, В.С. Русаков, Н.Н. Кошлякова

Московский государственный университет им. М.В. Ломоносова

THE FEATURES OF COMPOSITION AND CATION ORDERING IN BUSTAMIT-GROUP MINERALS

N.V. Shchipalkina, I.V.Pekov, S.M. Aksenov, R.K. Raszvetaeva, V.S.Rusakov, N.N. Koshlyakova Lomonosov Moscow State University

Бустамит – минерал семейства пироксеноидов с трёхчленной цепочкой кремнекислородных тетраэдров в структуре. Он встречается в марганцевых и известково-марганцевых скарнах, в некоторых метаморфитах, нередко выступает в качестве породообразующего, ассоциируя с тефроитом, родонитом, йохансенитом, спессартином и другими силикатами Mn. Идеализированная формула собственно бустамита – Ca₃Mn₃[Si₃O₉]₂, но под названием «бустамит» в литературе описываются образцы с разным соотношением Ca : (Mn + F e) и с разными схемами упорядочения катионов Ca, Mn, Fe по позициям в структуре. Таким образом, можно говорить уже о группе бустамита. Изучение вариаций химического состава и характера распределения катионов в минералах данной группы важно для лучшего понимания не только кристаллохимии пироксеноидов в целом и выявления взаимосвязей «химический состав – структура» в них, но и возможной связи катионного состава этих минералов с генетическом типом объекта, то есть для развития кристаллохимического аспекта филогении цепочечных силикатов.

В настоящей работе методами электронно-зондового микроанализа и инфракрасной (ИК) спектроскопии изучено 14 образцов бустамита из коллекций Минералогического музея имени А.Е. Ферсмана РАН и 2 образца из коллекции Н.В. Чуканова. Необычно высокожелезистые при существенном содержании Мп образцы из месторождения Южного (Приморье, Россия) и из ксенолита в щелочных вулканитах Беллерберга (Айфель, Германия) изучены также методом рентгеноструктурного анализа для установления распределения катионов по позициям.

Для марганцевых пироксеноидов (и бустамита в частности) видообразующими катионами металлов являются Ca^{2+} , Mn^{2+} и Fe^{2+} , а в качестве главных примесных катионов выступают Mg^{2+} и Zn^{2+} . Соотношения этих катионов различаются не только у представителей разных групп этих минералов, но и в пределах одной группы.

Для бустамита с содержаниями Ca 1.02–5.60, Mn 0.48–4.51, Fe 0.00–1.05, Mg 0.00–0.31, Zn 0.00– 0.20 атома на формулу (а.ф.) точки составов образуют два поля, отвечающих почти безжелезистым и железистым образцам (рис.).

Среди безжелезистых преобладают образцы из скарновых месторождений, а среди железистых — образцы из различных метаморфитов, а также из необычных датолит-геденбергит-бустамитовых скарнов Дальнегорска (Приморье), которые ранее описывались как волластонит-датолитовые. Однако, как показали инфракрасные спектры типичных образцов данных пород, «волластонит» здесь на самом деле является высококальциевым, а в нашем случае ещё и обогащённым железом относительно марганца бустамитом. Полученные результаты не противоречат данным недавних работ, посвящённых Дальнегорским скарновым месторождениям (Казаченко и др., 2012). Таким образом, состав бустамитов в целом зависит от генетического типа объекта. Однако, стоит отметить, что принадлежность образцов к «метаморфитам» или «скарнам» устанавливалась в данном случае лишь по облику образца и по литературным данным о том или ином месторождении. Установить конкретное место отбора и его генетическую принадлежность (к более поздним, гидротермальным образованиям, например) спустя десятки, а в случае некоторых музейных образцов и более чем сотню лет, не представляется возможным.

Структуру бустамита можно рассматривать как производную от структурного архетипа волластонита Ca₂Si₂O₀. Для бустамита по сравнению с волластонитом, имеющим три позиции Ca, характерно появление чет-

Рис. Соотношения главных катионов металлов в изученных образцах минералов группы бустамита.

вёртой катионной позиции M4, что обусловлено искажением октаэдрической ленты у волластонита в результате «приспособления» её к более мелким двухвалентным катионам – Мп, Fe, для которых оказываются наиболее подходящими позиции M3 и M1, менее крупнообъёмные, нежели M2 и особенно M4, которые остаются заселёнными Ca (Ohashi and Finger, 1978). Широкий разброс составов бустамита вдоль линии Ca-Mn на диаграмме (см. рис.) может объясняться изоморфизмом Ca и Mn(Fe) в позициях M1, M2 и M3, которые подходят по размерам как для Ca (в первую очередь M1 и M2), так и для более мелких катионов. Сначала мы предполагали, что железо в бустамите должно избирательно концентрироваться в наименьшем по объему полиэдре M3, однако, как оказалось, Fe не отделяется нацело от других катионов, а входит в позиции M1-3вместе с Mn и даже с Ca.

Содержание магния в бустамите незначительно: ионный радиус Mg меньше, чем у Mn^{2+} и Fe²⁺, не говоря уже о Ca. В целом, содержания малых (по сравнению с Ca) двухвалент-

ных катионов в минералах со структурными типами бустамита и волластонита подчиняются последовательности, находящейся в прямой связи с их ионными радиусами: Mn > Fe > Mg. Собственно магнезиальных членов этих серий вообще неизвестно, а железистые (ферробустамит и Fe-содержащая низкомарганцовистая разновидность волластонита) редки в природе, тогда как марганцовистые (бустамит и Mn-содержащий волластонит) достаточно широко распространены, как показывает анализ полученных нами данных по химическому составу бустамита вкупе с литературными материалами (Минералы, 1981).

Данные по упорядочению катионов по *М*-позициям в структурно изученных образцах минералов со структурным типом бустамита представлены в таблице.

Эти образцы различаются доминирующими катионами в четырёх неэквивалентных катионных позициях M1–4. Для собственно бустамита (Peacor, Buerger, 1962) характерен такой тип упорядочения Са и Mn: позиции M1 и M3 заняты Mn, а M2 и M4 – Са. У ферробустамита (Burnham, 1975) позиции M1 и *М*4 полностью заселены Са, позиция *М*2 — смешанная, с преобладанием Са над Fe, а позиция *М*3 полностью занята атомами Fe. Для «Са-бустамита» характерно вхождение Са в M1, M2, M4, тогда как в M3 преобладает Mn (Onashi, Finger, 1978). В мендигите Mn доминирует в M1, M2, M3, а позиция M4, как и в обсуждавшихся выше минералах, заселена Са (Чуканов и др., 2014). Для высокожелезистого бустамита из Брокен Хилла (Новый Южный Уэльс, Австралия), изученного нами (Аксенов и др., 2015), установлено заселение позиции M3 атомами Fe, Mn (преобладают), Mg и Zn и вхождение Mn и Fe позицию M1 в соотношении 3:1. Изначально предполагалось, что всё железо находится в одной позиции – M3 (с минимальным объёмом), но мёссбауэровский спектр позволил определить как валентность железа, так и факт распределения его по двум позициям в соотношении 2:1. Отличительной особенностью бустамита из месторождения Южного (обр. 81908*), изученного в данной работе, является распределение Fe по трём неэквивалентным позициям M1, M2, M3 в соотношении 9:2:1, что доказано данными мёссбауэровской спектроскопии. Как и в случае бустамита из Брокен Хилла, для него первоначально предполагалось полное заселение атомами Fe позиции M3 с минимальным средним расстоянием M-O 2.1 Å. Однако атомы железа вошли в три позиции вместе с Мп и Са. В образце 81908* Мп доминирует над Са в позиции M2, что позволяет считать его аналогом мендигита с преобладанием Fe в позиции M3. Кристаллохимическую формулу этого образца с учётом данных мёссбауэровской спектроскопии можно записать как $(Mn_{0.83}Fe_{0.13}Ca_{0.04})_2(Mn_{0.50}Ca_{0.43}Fe_{0.07})_2(Fe^{2+}_{0.63}Mn_{0.34}Fe^{3+}_{0.03})Ca[Si_3O_9]_2$. Химический состав и заселение позиций в структуре образца CS1381 и образца 81908* в целом схожи. Однако для образца CS1381 характерно заселение позиции M4 атомами Са и Mn (т.к. тепловой параметр этой позиции при полном заселении её Са указывал на необходимость «утяжеления»). При отсутствии данных мёссбауэровской спектроскопии нельзя точно сказать, как распределяются атомы Fe. С учётом расстояний М–О и

Таблица

Состав катионных позиций в с	структурно изученных минералах
со структурным	и типом бустамита

Минерал	<i>M</i> 1	M2	<i>M</i> 3	<i>M</i> 4	Ссылки	
Бустамит	Mn ₂	Ca ₂	Mn	Ca	Peacor and Buerger, 1962	
Ферробустамит	Ca ₂	(Ca,Fe) ₂	Fe	Са	Burnham, 1975	
«Са-бустамит»	Ca ₂	Ca ₂	Mn	Са	Ohashi and Finger, 1978	
Мендигит	Mn ₂	$Mn_{15}Ca_{05}$	Mn	Са	Чуканов и др., 2014	
Высокожелезистый бустамит (Брокен Хилл, Австралия)	Mn _{1.75} Fe _{0.25}	Ca _{1.6} Mn _{0.4}	$\frac{Fe_{_{0.50}}Mn_{_{0.44}}}{Mg_{_{0.04}}Zn_{_{0.02}}}$	Ca	Аксенов и др, 2015	
Образец 81908* (Южное, Приморье)	$Mn_{1.66}Fe^{2+}{}_{0.26}Ca_{0.08}$	$\frac{Mn_{1.00}Ca_{0.87}}{Fe^{2^+}_{0.13}}$	$Fe^{2+}_{0.63}Mn_{0.34}Fe^{3+}_{0.03}$	Ca	Настоящая работа	
Образец CS1381 (Беллерберг, Германия)	(Mn,Fe) ₂	$(Ca_{0.50}Mn_{0.50})_2$	(Mn,Fe) _{0.85} Mg _{0.15}	Ca _{0.65} Mn _{0.35}	Настоящая работа	

тепловых параметров каждой позиции, можно было бы предположить, что атомы Fe предпочительно будут заселять малый по объёму полиэдр M3, но, как показали мёссбауэровские данные для других членов группы, закономерности респределения Mn^{2+} и Fe²⁺ в этих минералах сложнее, чем просто сепарация по размеру. Следовательно, предварительную кристаллохимическкую формулу можно представить как ([Mn,Fe])₂(Ca_{0.50}Mn_{0.50})₂([Mn,Fe]_{0.85}Mg_{0.15})(Ca_{0.65}Mn_{0.35})(Si₃O₉)₂ (пока без уточнения положения Fe).

Проведенные исследования показали, насколько широко может варьировать химический состав, и в частности соотношение Ca: Mn: (Fe+Mg), у минералов группы бустамита. Для них наблюдается закономерное, хотя и небольшое увеличение содержания железа с переходом от скарновых месторождений к метаморфическим, а кальция – с общим ростом отношения Ca:(Mn+Fe) в минералообразующей среде.

Более подробное, включая решение кристаллических структур, исследование обогащённых одновременно Mn и Fe представителей группы бустамита, отличающихся по составу от ранее структурно изученных образцов, позволило расширить представления о кристаллохимии марганцевых пироксеноидов и их филогении. Показано, что при соблюдении общих закономерностей в распределении катионов, выражающихся в избирательном заселении позиции M4 кальцием и преимущественной концентрации малых катионов (Fe, Mn) в позиции M3, для позиций M1 и M2 наблюдаются заметные вариации состава, в т.ч. и величины отношения Mn:Fe. Подчеркнём, что наиболее низкокальциевые и, соответственно, обогащённые Mn и Fe члены группы, у которых при этом наблюдается и значительная степень катионной разупорядоченности (что особенно хорошо видно на примере обр. CS1381, у которого даже позиция M4 не является чисто кальциевой), характерны для переработанных ксенолитов Mn-содержащих пород в молодых щелочных вулканитах Айфеля.

Исследования выполнены при поддержке РНФ, грант 14-17-00048.

Литература

Аксенов С.М., Щипалкина Н.В., Расцветаева Р.К., Русаков В.С., Пеков И.В., Чуканов Н.В., Япаскурт В.О. Высокожелезистый бустамит из Брокен Хилла, Австралия: кристаллическая структура и особенности катионного упорядочения // Кристаллография, 2015. № 60. С. 385–390.

Казаченко В.Т., Перевозчикова Е.В., Нарнов Г.А. Акцессорная минерализация в скарнах Дальнегорского рудного района (Сихотэ-Алинь) // Зап. РМО. 2012. № 4. С. 73–96.

Минералы. Справочник. М.: Недра, 1981. Т. Ш. Вып. 2. 613 с.

Чуканов Н.В., Аксенов С.М., Расцветаева Р.К., Ван К.В., Белаковский Д.И., Пеков И.В., Гуржий В.В., Шюллер В., Тернес Б. Мендигит Mn, MnCa(Si,O₉)₂ – новый минеральный вид группы бустамита из вулканического района Айфель, Германия // Зап. РМО. 2015. № 2. С. 48–50.

Burnham C.W. Ferrobustamite: the crystal structures of two Ca, Fe bustamite-type pyroxenoids // Zeitschrift für Kristollagrophie. 1975. № 117. P. 331–343.

Ohashi Y., Finger L.W. The role of octahedral cations in pyroxenoid crystal chemistry. Bustamite, wollastonite, and pectolite-schizolite-serandite series // Am. Min., 1978. № 63. P. 272–288.

Peacor D.R., Buerger M.J. Determination and refinement of the crystal structure of pyroxenoids: correction // Zeitschrift für Kristollagrophie. 1962. № 142. P. 450–452.