К РЕАБИЛИТАЦИИ ФАССАИТА

В.Г. Кориневский, Е.В. Кориневский Институт минералогии УрО РАН, г. Muacc; vgkor@mineralogy.ru

TO REHABILITATION OF FASSAITE

V.G. Korinevsky, E.V. Korinevsky Institute of Mineralogy UB RAS, Miass; vgkor@mineralogy.ru

Фассаит – наименее распространённая разновидность кальциевых моноклинных пироксенов (Минералы, 1981). Отличительной особенностью его состава является высокое содержание атомов Ca, Fe³⁺ и Al (Дир и др.; 1965; Добрецов и др., 1971; Минералы, 1981). Этим он весьма существенно отличается от типового диопсида и характерен для многих специфических по условиям образования пород (магнезиальные скарны, метасоматиты, включения в лавах, метеориты и породы Луны, вкрапленники в эффузивах, ультраосновные, основные и щелочные магматические породы и т. д.). По-существу, фассаит – это обогащённый чермакитовыми молекулами диопсид, и изученные фассаиты Урала подтверждают этот вывод (Кориневский, Кориневский, 2003; Пушкарёв и др., 2004). Как оказалось, фассаит на Урале – не минералогическая редкость, а широко распространённый породообразующий минерал (Латыш, 1960; Колесник, 1972; Ефимов, 1984; Фоминых и др., 1987; Пушкарёв и др., 2004). Он входит в состав трёх генетических групп пород: магматических, метаморфических и метасоматических. Самые крупные объёмы занимают магматические породы платиноносной ассоциации: клинопироксениты, горнблендиты и габбро.

Номенклатурная комиссия ММА рекомендовала изъять этот термин из употребления, предложив вместо него очень громоздкое и неоднозначное название «железо-алюминиевый диопсид или авгит» (Morimoto et al., 1988). Индикаторная роль фассаита, как показателя высоких температур и давлений при формировании пород (Добрецов и др., 1971; Минералы, 1981; Крылова и др., 1991), позволяет попрежнему использовать этот термин в петрографической и минералогической практике (Петрография, 1976; Магматические..., 1983; Крылова и др., 1991; Маракушев и др., 2000; Петров, Золотарёв, 2000; Булах, Золотарёв, 2000; Баженов, 2001).

Нами в Ильмено-Вишневогорской зоне обнаружены новые для Урала разновидности горных пород, содержащие фассаит (табл. 1), полностью отвечающего по своим свойствам определению этого минерала. Эти породы слагают крупные блоки и изолированные глыбы в пластинах серпентинитового меланжа в окружении метаморфических толщ. По минеральному составу и изометрично-зернистой структуре эти полнокристаллические породы соответствуют безхромистым клинопироксенитам, реже - анортитовым пироксен-амфиболовым габбро, нередко со значительной долей высококальциевого граната (андрадит-гроссуляра и гроссуляр-андрадита), эпидота и шпинели (плеонаста). В них отсутствуют следы замещения одних минералов другими, их реакционных взаимоотношений, нет реликтов «теней» предшествующих минеральных ассоциаций. Между породообразующими минералами повсеместно наблюдаются индукционные поверхности одновременного роста, а в отдельных индивидах проявлено двойникование, нередки минералы-включения. Всё это противоречит распространенным представлениям об этих породах как образованиях метасоматических (родингитах или скарнах). В них отсутствуют те морфологические признаки минеральных индивидов, которые должны проявляться в породах метасоматического происхождения (Попов, 2011). В целях сравнения мы привлекли данные (Колесник, 1972) по сходным по составу и геологическому положению кальциево-силикатным породам («родингитам») из Борзовского ультраосновного массива в окрестностях города Кыштыма на Южном Урале.

Наиболее распространена тёмно-зеленая разновидность фассаита. По данным мессбауэровского спектра (Кориневский, Кориневский, 2003), в зелёном фассаите очень велика роль атомов Fe³⁺ (в 3 раза больше, чем атомов Fe²⁺). В этом кроется причина интенсивной зелёной окраски фассаита из габбро. Значительно реже встречаются зёрна фассаита, окрашенные в коричневый цвет, с достаточно отчётли-

Таблица 1

	Клинопироксенити								Γεδόρο					
Компо-	клинопироксениты								1 a00p0					
HAIIT	C_{π} 12	$C_{\pi} = 14$	Сд-9	Сд-9	Сд-3	10	11	Сд-1	C_{π} 10	ИК-194	OCM 5	ИК—173		
пент	Сд-12	Сд-14	-1	-3	-2	10	11	-3	Сд-10	-4	UCIVI-5	-13-1		
SiO ₂	42.32	42.92	42.93	44.39	43.88	45.11	45.95	44.85	45.67	42.16	41.52	46.33		
TiO ₂	1.23	1.51	0.25	0.11	1.31	1.15	0.20	0.13	0.09	0.91	0.18	2.15		
Al_2O_3	11.54	11.40	12.00	11.50	10.95	10.19	10.84	10.90	10.71	11.58	13.73	9.50		
Cr_2O_3	_	_	_	_	_	_	_	_	_	_	0.15	0.05		
Fe ₂ O ₃	8.37*	7.04*	7.11*	5.25*	5.67*	5.40	6.46	5.51*	5.13*	11.60*	9.47*	5.51*		
FeO						1.36	0.57							
MnO	_	_	0.15	0.05	0.17	0.10	0.05	0.09	_	0.20	0.19	0.15		
MgO	10.65	11.56	11.45	12.11	13.56	13.09	10.40	11.93	12.60	9.40	8.90	11.43		
CaO	25.73	24.79	25.09	25.50	23.41	23.06	23.35	25.63	25.01	23.65	24.55	24.54		
Na ₂ O	_	_	_	_	0.06	0.23	0.19	0.16	_	0.42	0.10	0.07		
K ₂ O	—	_	-	_	_	0.10	0.12	-	_	_	0.17	0.20		
Сумма	99.84	99.22	98.98	98.91	99.01	99.79	98.13	99.20	99.21	99.92	98.96	99.93		

Химический состав (мас. %) фассаитов Ильмено-Вишневогорского комплекса и Борзовского ультраосновного массива

Примечание. Вмещающие породы: западное побережье оз. Садок: Сд–12 – гранатовый клинопироксенит, Сд–14 – клинтонит-гранатовый клинопироксенит, Сд–9–1 – шпинель-гранат-эпидотовый клинопироксенит, Сд–9–3 – шпинель-эпидот-гранатовый клинопироксенит, Сд–3–2 – апатит-шпинелевый клинопироксенит; 10, 11 – Борзовский ультраосновной массив, эпидот-гранатовые клинопироксениты («родингиты») (Колесник, 1972, табл. 2); зап. побережье оз. Садок: Сд–1–3, Сд–10 – пироксен-амфиболовое анортитовое габбро; восточное побережье оз. Бол. Ишкуль у Осинового мыса: ИК–194–4 – эпидот-пироксеновое анортитовое габбро с магнетитом, ОСМ–5 – эпидот-пироксеновое анортитовое габбро; сев. подножье горы Савелькуль в Ильменском заповеднике: ИК–173–13–1 – пироксен-гранат-клиноцоизитовое анортитовое габбро с ильменитом и шпинелью; * – суммарное содержание оксидов железа. Прочерк – значения ниже чувствительности аналитического метода.

вым плеохроизмом. Это обусловлено высоким содержанием (до 2 %) TiO_2 . Выявленные причины разной окраски фассаита из Ильмен согласуются с данными по другим регионам (Минералы, 1981, с. 331). Показательны близкие значения относительных содержаний ионов Fe^{3+} и Fe^{2+} , определённые по системе пересчётов в программе PetroExplorer (http://evkor.net.ru) и по наиболее объективным данным мёссбауэровских спектров (табл. 2).

Фассаитовые породы Ильменогорского комплекса являются высокотемпературными образованиями. Оценка температур, проведённая по известному плагиоклаз-амфиболовому геотермометру (Perchuk, 1990) и амфиболовому геотермометру (Hammarström, Zen E-An, 1986) дают разброс значений 800– 1000 °C. Специфичный набор минералов (присутствие наряду с фассаитом паргасита, анортита, высококальциевого гроссуляр-андрадитового граната, первичного эпидота) и особенности их химизма также говорят о высокотемпературных и высокобарических (заметная роль молекулы Эскола, табл. 2) условиях их формирования (гранулитовая и эклогитовая фации метаморфизма, Соболев, 1964; Кориковский, 1967; Сердюченко, 1982; Крылова и др., 1991). Тем самым подтверждается важная типохимическая роль фассаита как индикатора высокотемпературных процессов магматизма и метаморфизма.

Для уточнения видовой принадлежности изученных фассаитов их составы были пересчитаны (Кориневский Е., 2015) по известной методике (Булах, 1964) на миналы, а затем нанесены на классификационые диаграммы Н. Моримото с соавторами (Morimoto et al., 1988) и А. Г. Булаха, А. А. Золотарёва (2000). Подтвердился общий вывод этих исследователей, что преобладающим в составе фассаитов является диопсидовый минал и в этом смысле фассаиты являются разновидностью диопсидов, отличающихся от последних заметным количеством (до 26 мол %) кальциевого минала Чермака, повышенной железистостью (в пределах 18–59 мол %), высокой степенью окисленности железа (по данным Мёссбауэровского спектра – от 27 до 88 относительных %) (табл. 2). Это отчётливо выражается и в кучном расположении фигуративных точек фассаитов вблизи, но выше поля типовых диопсидов (рис. 1). На этом основании изученные фассаиты должны формально относиться к волластонитам, что совершенно не соответствует

Компо-			Клин	Габбро							
нент	Сд-12	Сд-14	Сд-9 -1	Сд-9 -3	Сд-3 -2	10	11	Сд-1 -3	Сд-10	ИК—194 —4	OCM- 5
Si (ф.e.)	1.578	1.602	1.601	1.647	1.624	1.670	1.745	1.661	1.688	1.583	1.567
Ті (ф.е.)	0.034	0.042	0.007	0.003	0.036	0.032	0.006	0.004	0.003	0.026	0.005
Al (φ.e.)	0.507	0.501	0.527	0.503	0.478	0.445	0.425	0.476	0.467	0.512	0.611
Сr (ф.е.)	-	_	_	—	—	_	—	—	_	_	0.004
Fe ³ (φ.e.)	0.268	0.210	0.258	0.198	0.205	0.150	0.185	0.207	0.153	0.301	0.257
Fe ² (φ.e.)	_	0.010	_	_	_	0.042	0.018	—	0.006	0.064	0.042
Мn ² (ф.е.)	_	_	0.005	0.002	0.005	0.003	0.002	0.003	_	0.006	0.006
Mg (ф.е.)	0.592	0.643	0.636	0.670	0.748	0.722	0.589	0.658	0.634	0.526	0.501
Ca (ф.е.)	1.028	0.991	1.002	1.013	0.928	0.915	0.950	1.017	0.990	0.951	0.992
Na (ф.е.)	_	_	_	_	0.004	0.017	0.014	0.011	_	0.031	0.007
К (ф.е.)	-	_	_	_	_	0.005	0.006	_	_	_	0.008
$Fe^{2+}(M1)$ (%)			11.5		7.7					7.6	23.0
$Fe^{2+}(M2)$ (%)					9.1					26.3	2.8
${ m Fe}^{3+}$ (%)			88.5		83.2					66.1	74.1
Са _{0.5} Al ^{VI} Si ₂ O ₆ (%) (мол. Эскола)	1.563	1.893	3.688	4.453	1.870	1.889	6.539	0.349	4.699	1.226	4.839
СаАl ₂ SiO ₆ (%) (мол.Чермака)	22.345	21.513	23.126	21.674	20.157	18.133	19.685	20.249	20.196	21.886	26.268
Энстатит (%)	31.35	34.69	33.48	35.57	39.64	39.42	33.78	34.92	37.66	28.47	27.84
Ферросилит (%)	14.22	11.85	13.80	10.60	11.17	10.68	11.72	11.15	8.60	20.05	16.96
Волластонит (%)	54.44	53.46	52.73	53.83	49.19	49.91	54.50	53.92	53.73	51.48	55.20
Железистость (%)	29.98	28.95	29.801	23.25	24.40	23.92	26.37	24.54	20.35	59.16	38.52

Формульные коэффициенты, миналы и данные мёссбауэровских спектров фассаитов Ильмено-Вишнёвогорского комплекса и Борзовского ультраосновного массива

Таблица 2

Примечание. Расчёты формульных коэффициентов и миналов произведены с помощью программы PetroExplorer (Кориневский Е.В., 2015). Относительные значения Fe³⁺ и Fe²⁺ в позиции М1 и М2 определены на основании расчётов мёссбауэровских спектров пироксенов. Привязка проб см. табл. 1. Прочерк – нулевые значения, пустые ячейки – расчёт не производился.

Рис. Фигуративные точки фассаитов Ильмено-Вишнёвогорского комплекса и Борзовского ультраосновного массива (см. табл. 1) на фрагменте классификационной диаграммы номенклатуры пироксенов (Morimoto et al., 1988). Условные обозначения: 1 – фассаиты из вишнёвогорских клинопироксенитов; 2 – фассаиты из борзовских клинопироксенитов; 3 – фассаиты из вишнёвогорских габбро; 4 – фассаиты из ильменогорских габбро. реальным химическим составам этих минералов. Это замечание касается и положения точек состава и других фассаитов, заимствованных из литературы (Дир и др., 1965; Добрецов и др., 1971; Колесник, 1972; Минералы, 1981). Тем самым подтверждается мнение Т. Г. Петрова и А. А. Золотарёва (2000, с. 127) о том, что фассаит является естественно обособленным по составу моноклинным пироксеном, который мог бы рассматриваться в качестве самостоятельного минерального вида. По всей видимости, предложенная схема классификации Ca-Fe-Mg-пироксенов (Morimoto et al., 1988) нуждается в существенной корректировке. Данные по фассаитам Ильмено-Вишнёвогорской зоны согласуются с этим выводом.

На основании результатов новых анализов клинопироксенов из включений неизменённых габбро и клинопироксенитов в блоках и пластинах серпентинитового меланжа на Южном Урале сделан вывод о неправомерности изъятия термина фассаит из минералогической номенклатуры.

Литература

Булах А.Г. Руководство и таблицы для расчёта формул минералов. М.: Недра, 1964. 132 с.

Булах А.Г., Золотарёв А.А. Состав моноклинных Ca-Mg-Fe-Na-пироксенов C2/с и правило 50 % // ЗВМО. 2000. № 6. С. 69–79.

Добрецов Н.Л., Кочкин Ю.Н., Кривенко А.П., Кутолин В.А.: Породообразующие пироксены. М.: Наука, 1971. 454 с. Ефимов А.А. Габбро-гипербазитовые комплексы Урала и проблема офиолитов. М.: Наука, 1984. 232 с.

Колесник Ю.Н. Кальциево-силикатные породы из ультраосновных массивов и проблемы их генезиса // Геология и геофизика. 1972. № 9. С. 16–27.

Кориковский С.П. Метаморфизм, гранитизация и постмагматические процессы в докембрии Удокано-Становой зоны. М.: Наука, 1967. 298 с

Кориневский В.Г., Кориневский Е.В. Две разновидности фассаита из Ильменских гор на Урале // ЗВМО. 2003. № 1. С. 121–134.

Кориневский Е.В. PetroExplorer – геохимический процессор. Version 3.1. http://evkor.net.ru (accessed 11 Feb 2015).

Крылова М.Д., Галибин В.А., Крылов Д.П. Главные тёмноцветные минералы высокометаморфизованных комплексов (вопросы минералогии, петрологии и геохимии). Справочное пособие. Л.: Наука, 1991. 350 с.

Латыш И.К. Минеральный состав и условия локализации титаномагнетитовых руд Висимского месторождения на Среднем Урале // Тр. Горно-геол. ин-та УФ АН СССР. 1960. Вып. 50. 76 с.

Магматические горные породы. Классификация, номенклатура, петрография. Часть І. М.: Наука, 1983. 367 с. Маракушев А.А., Бобров А.В., Перцев Н.Н. и др. Петрология. І. Основы кристаллооптики и породообразую-

щие минералы. М.: Научный мир, 2000. 316 с.

Минералы. Справочник. Т. З. Вып. 2. М.: Наука, 1981. 614 с.

Петров Т.Г., Золотарёв А.А. Возможность классифицирования минералов с использованием информационного языка RHA (на примере моноклинных пироксенов) // ЗВМО. 2000. № 3. С. 117–128.

Петрография. Часть І. / Под. ред. А.А. Маракушева и Т.И. Фроловой. М.: Изд-во МГУ, 1976. 384 с.

Попов В.А. Практическая генетическая минералогия. Екатеринбург: УрО РАН, 2011. 167 с.

Пушкарёв Е.В., Бирюзова А.П., Гуляева Т.Я. Фассаит из метаморфических пород Хабарнинского габброультрамафитового массива на Южном Урале // Вестник Урал. отдел. Минералог об-ва РАН, 2004. № 3. С. 89–97.

Сердюченко Д.П. «Молекулы Эскола» в природных и искусственных пироксенах // Редкие элементы в геологии. М.: Наука, 1982. С. 187–209.

Соболев Н.В. Парагенетические типы гранатов. М.: Наука, 1964.

Фоминых В.Г., Краева Ю.П., Ларина Н.В. Петрология и рудогенез Качканарского массива. Свердловск: УНЦ АН СССР, 1987. 184 с.

Hammarström J. M., Zen E-An. Aluminium in hornblende: an empirical igneous geobarometer // Amer. Miner., 1986. V. 71. № 11/12. P. 1297–1313.

Morimoto N., Fabries J., Ferguson A. K., Ginzburg I. V., Ross M., Seifert F. A., Zussman J. Nomenclature of pyroxenes // Schweiz. Min. Petr. Mitt., 1988. V. 68. P. 95–111.

Perchuk L.L. Derivation of thermodynamically consistent system of geothermometers and geobarometers for metamorphic and magmatic rocks // Progress in metamorphic and magmatic petrology. Ed. L. L. Perchuk. Cambridge University Press, 1990. P. 93–112.