ОНТОГЕНИЯ, ФИЛОГЕНИЯ, СИСТЕМА МИНЕРАЛОВ В ИССЛЕДОВАНИЯХ ПРИРОДНЫХ ОБЪЕКТОВ

УДК 549.75

О НОВОЙ НАХОДКЕ ВЛАДИМИРИТА Са₅H₂(AsO₄)₄·5H₂O ИЗ НЕОБЫЧНОЙ АРСЕНАТНОЙ МИНЕРАЛИЗАЦИИ ЧАУВАЯ (КИРГИЗИЯ)

А.А. Агаханов^{1,2}, В.Ю. Карпенко², Л.А. Паутов², О.И. Сийдра¹

¹Институт Наук о Земле, СПбГУ, Санкт-Петербург, Россия ²Минералогический музей им А.Е. Ферсмана, РАН, Москва, Россия

BY A NEW FIND OF VLADIMIRITE Ca₅H₂(AsO₄)₄·5H₂O FROM UNUSUAL ARSENATE MINERALIZATION OF CHAUVAI, KYRGYZSTAN

A.A.Agakhanov^{1,2}, V.Yu. Karpenko², L.A. Pautov², O.I. Siydra¹

¹Institute of Earth Sciences, SPbState University, Saint Peterburg, Russia ²Fersman Mineralogical Museum RAS, Moscow

Владимирит – водный арсенат кальция – впервые был открыт Е.И. Нефёдовым на никель-кобальтовых месторождениях Владимировское (Горный Алтай) и Хову-Аксы (Тува) (Мокиевский, 1953; Pekov, 1996). Позднее владимирит был встречен на руднике Ирхтем (Бу-Аззер, Марокко) (Pierrot, 1964). Данное месторождение является наиболее известным по прекрасному коллекционному материалу владимирита (Favreau, Dietrich, 2006). Среди других местонахождений следует отметить провинцию Копиапо, Чили (Yang et al., 2011), а также древние шлаковые отвалы района Лаврион (Греция) (Kolitsch et al., 2015). Формула владимирита неоднократно подвергалась изменениям и уточнениям. В первом описании Е.И. Нефёдова приведена формула $Ca_3(AsO_4)_2 \times 4H_2O$. Изучая вторую находку владимирита из Марокко, Р. Пьерро предложил формулу $Ca_5H_2(AsO_4)_4 \times 5H_2O$ (Pierrot, 1964), что впоследствие было подтверждено (Яхонтова, 1968; Яхонтова, Столярова, 1970). Согласно выполненной недавно расшифровке структуры Х. Янгом с коллегами, формула владимирита должна быть записана в виде $Ca_4(AsO_4)_2(AsO_3OH) \times 4H_2O$ (Yang et al., 2011).

Нами владимирит был встречен в составе арсенатной минерализации на участке Обдиля в пределах Чаувайского рудного поля – древнего горнорудного района Ферганы (в настоящее время административно он относится к Кадамджайскому району Баткенской области, Республика Кыргызстан). Это поле, включающее одно из крупнейших ртутных месторождений Средней Азии, – Чаувайское, – входит в состав Южно-Ферганского сурьмяно-ртутного пояса, протягивающегося в южном обрамлении Ферганской впадины. Интерес к нему в начале XX века был инициирован известным российским геологом, геохимиком Д.И. Щербаковым во время его работы коллектором в Ферганской радиевой экспедиции в 1914 году (Щербаков, 1969). Впоследствии детальное изучение этого рудного района было продолжено в 1924 году работами Академии Наук, которые получили систематический характер благодаря организации Памирской (Таджикско-Памирской) экспедиции (Щербаков, 1931; Сауков, 1932). В геологическом отношении район характеризуется чешуйчато-надвиговой тектоникой, обусловившей формирование толщ алайского комплекса. Эти толщи осложнены системой сложно построенных крутопадающих тектонических блоков, разломами субширотного и северо-восточного простирания и сопровождаются зонами гидротермально изменённых пород с ртутной, сурьмяной, мышьяковистой и фторидной минерализацией, а также золотым оруденением (Белов и др., 1989). Одним из участков, обогащённых As, а также Hg, Tl, Au, является участок Обдиля. В.В. Рогальский (1992) отметил богатую реальгар-аурипигментовую минерализацию на участке в составе нижне- и среднекаменноугольных карбонатных толщ и среднекаменноугольных олистостромовых отложений толубайской свиты. Сведения о вторичной арсенатной минерализации для этого района ранее не сообщались. В расчистке одной из дорог на описываемом участке в составе арсенатной ассоциации, помимо аурипигмента и реальгара, нами был встречен целый ряд вто-

Рис. 1. Кристаллы владимирита: а – общий вид, б – фрагмент. SEM T-100 Jeol, режим съёмки SEI.

ричных минералов мышьяка: владимирит $Ca_4(AsO_4)_2(AsO_3OH) \times 4H_2O$, тапиаит $Ca_5Al_2(AsO_4)_4(OH)_4 \cdot 12H_2O$, мансфельдит $Al(AsO_4) \cdot 2H_2O$, талмессит $Ca_2Mg(AsO_4)_2 \cdot 2H_2O$, высококальциевые представители серии фармакоалюмита — фармакосидерита. Весьма ярким представителем

Рис. 2. Радиально-лучистые агрегаты владимирита на поверхности известняка. Длина поля 1 см.

этой ассоциации является владимирит, который и охарактеризован кратко в настоящей статье.

Владимирит встречен в виде удлинённо-призматических кристаллов длиной от десятых долей миллиметра до 1 см; кристаллы его белые или бесцветные, прозрачные и полупрозрачные. Поверхности его граней (и особенно вершины кристаллов) часто расщеплены и покрыты корками кальцита, мелкими кристаллами тапиаита и предполагаемого опала (рис. 1). Из-за несовершенства кристаллов гониометрические измерения провести не удалось. Часто владимирит развит по тонким трещинам во вмещающих светлосерых известняках, в которых попадаются золотисто-жёлтые таблички аурипигмента, тонкие прожилки кирпично-красного реальгара. Продольные сколы вдоль таких трещин обна-

руживают порой эффектные скопления радиально-лучистых дисковидных выделений владимирита от 0.5 до 1 см в диаметре (рис. 2). В относительно широких трещинах (более 1 см) владимирит образует радиально-лучистые сферические агрегаты, инкрустирующие стенки трещин, а также параллельно-шестоватые агрегаты I-типа с признаками геометрического отбора в основании. В тесной ассоциации с владимиритом здесь находится гипс, частично выполняющий трещины.

Владимирит также установлен в составе арсенатно-кварц-гипсовых образований, встреченных среди известняков, состоящих (по данным рентгенофазового анализа) приблизительно в равной степени из кварца, гипса и арсенатов, преимущественно талмессита. Эти образования представляют собой пёстрые массы – буровато-рыжые с белыми пятнами и прожилками. Цвет их обусловлен присутствием минералов фармакосидерит–фармакоалюмитового ряда, местами слагающих плотные кристаллические массы коричневого цвета, иногда – губчатые розоватые корки мелких кубических кристаллов, а также наличием полупрозрачных опаловидных желтовато-светло-коричневых и тёмно-коричневых масс состава Ca-Fe-Al-As. Эти массы, как правило, рентгеноаморфны либо дают слабые линии, соответствующие минералам группы фармакосидерита. Владимирит в этих корках образует радиально-лучистые агрегаты тонко-игольчатых кристаллов с шелковистым блеском. Нередко в этих корках встречаются пустоты с пучками кристаллов владимирита свободного роста, на которые нарастают мелкие (100–200 мкм) сферокристаллы тапиаита Ca₅Al₂(AsO₄)₄(OH)₄·12H₂O – редкого минерала, обнаруженного до этого лишь в Jote mine, провинция Копиапо, Чили (Kampf et al., 2015). Тонкокристаллические агрегаты владимирита установлены также в составе обособленных желваков, сложенных мелкокристаллическим гипсом и мансфельдитом, образующим белые каолиноподобные массы.

Химический состав владимирита изучался на электроннозондовом микроанализаторе JCXA-733 Superprobe (JEOL), оборудованном энергодисперсионным спектрометром с системой анализа INCA при ускоряющем напряжении 20 кВ, токе зонда 2 нА. Стандартные образцы: As_2O_3 (As), авгит USNM (Ca), $SrSO_4$ (Sr, S).

Таблица 1

Химический состав владимирита из местонахождений: Обдиля, Киргизия (1, 2), Хову-Аксы, Россия (3), Cobriza mine, Чили (4) и Ighten mine, Марокко (5), мас. %

Компоненты	Компоненты 1		3	4	5			
SiO ₂	0.17		0.13 0.11		0.17			
SO ₃	_	0.20	0.15	0.15	0.42			
CaO	33.57	33.76	33.45	33.75	33.66			
As ₂ O ₅	52.47	52.4 52.26		52.69	52.41			
SrO	0.32	0.19	0.22	0.19	0.25			
H ₂ O (расчет.)	12.22	12.23	12.12	12.22	12.18			
Сумма	98.58	98.78 98.20		99.00	98.92			
Расчёт формул на сумму катионов = 7 ф.е.								
Ca ⁺²	3.96	3.97	3.96	3.96	3.95			
Sr ⁺²	0.02		0.01 0.01		0.02			
As ⁺⁵	3.02		3.02	3.02	3.00			
S^{+6}	_	0.02	0.01	0.01	0.03			
OH-*	0.93	0.91	0.89	0.89	0.85			
H,O	4.00	4.00	4.00	4.00	4.00			

Примечания. * Расчёт ОН по балансу зарядов. 1 – крупно-игольчатые кристаллы (лаб. № 5966); 2 – прожилок тонкоигольчатого агрегата (лаб. № 5981); 3 – плотный сферокристаллический агрегат (колл. ММФ, обр. № 57263), 4 – радиально-лучистый агрегат (колл. ММФ, обр. № 94410), 5 – тонкоигольчатые кристаллы (колл. А. Касаткина, обр. 386b).

Таблица 2

Межплоскостные расстояния владимирита из проявления Обдиля (Киргизия) (1) и Corbriza mine, Чили (2)

1	2	1,1-1	1	2	1,1-1	1	2	1,1,1
d, Å; (<i>I</i>)	d, Å; (<i>I</i>)		d, Å; (<i>I</i>)	d, Å; (<i>I</i>)	ηκι	d, Å; (<i>I</i>)	d, Å; (<i>I</i>)	ηκι
11.35; (3)	11.36; (3)	002	2.925; (5)	2.925; (3)	130		1.912; (3)	235
				2.924; (4)	-131	1.909; (7)	1.908; (7)	-242
							1.906; (6)	151
9.32; (2)	9.29; (10)	011	2.876; (13)	2.870; (4)	-132		1.882; (3)	-229
						1.880; (9)	1.881; (7)	218
							1.879; (6)	-153
7.59; (35)	7.58; (10)	012	2.842; (7)	2.840; (3)	008	1.867 ; (<i>13</i>)	1.867 ; (<i>19</i>)	-1.0.12
6.06; (5)	6.075; (8)	013		2.802; (13)	-126		1.8630; (4)	
			2.798; (74)	2.799; (75)	-211	1.864; (18)	1.8629;(10)	302
				2.792; (38)	132			-314
5.42; (3)	5.421; (14)	-102	2.736 ; (<i>21</i>)	2.736 ; (<i>17</i>)	027	1.845 ; (<i>10</i>)	1.8436 ; (<i>1</i>)	1.1.11
5.09; (9)	5.088; (26)	020	2.721 ; (<i>15</i>)	2.718 ; (<i>15</i>)	035	1.830 ; (<i>6</i>)	1.8306 ; (5)	236
4.799; (11)	4.802; (42)	111	2.676 ; (<i>13</i>)	2.675 ; (<i>19</i>)	133	1.794 ; (<i>12</i>)	1.7940 ;(<i>12</i>)	-155
4.648; (3)	4.643; (4)	022	2.604; (30)	2.605 ; (<i>39</i>)	117	1.776 ; (<i>3</i>)	1.7759 ; (2)	-324
4.408; (7)	4.405; (15)	-113		2.528; (2)	041	1.764 ; (<i>15</i>)	1.7638; (8)	0.3.11
			2.527; (9)	2.526; (6)	036			
4.301; (9)	4.319; (23)	-104	2.481; (23)	2.482; (5)	042	1.739; (3)	1.7403; (3)	-156
				2.479; (7)	028		1.7382; (3)	1.0.12
4.151 ; <i>100</i>)	4.148 ; (<i>89</i>)	015	2.457; (16)	2.459; (25)	204	1.714; (12)	1.7134; (3)	1.1.12
							1.7124; (3)	245
3.997; (25)	3.999 ; (68)	113	2.438; (8)	2.435; (<i>10</i>)	108		1.6944; (3)	229
						1.695; (21)	1.6943;(15)	-308
							1.6915; (3)	0.4.10

Продолжение таблицы 2

1	2	1.1.1	1	2	1.1.1	1	2	1.1.1
d, Å; (<i>I</i>)	d, Å; (<i>I</i>)	ηκι	d, Å; (<i>I</i>)	d, Å; (<i>I</i>)	ηκι	d, Å; (<i>I</i>)	d, Å; (<i>I</i>)	пкі
3.792; (43)	3.786; (18)	006	2.389; (9)	2.382; (5)	222		1.6562; (2)	-327
				2.379; (7)	135	1.655; (10)	1.6548; (4)	063
							1.6543; (1)	-334
							1.6541; (2)	058
3.717; (12)	3.718; (25)	121	2.362; (8)	2.368; (2)	118	1.640 ; (5)	1.6393 ; (7)	306
				2.356; (8)	-119			
3.564 ; (<i>13</i>)	3.582 ; (<i>21</i>)	114	2.305; (11)	2.305; (10)	141	1.626; (5)	1.6279; (7)	-335
				2.303; (7)	-225		1.6270; (2)	-161
3.528 ; (<i>23</i>)	3.524 ; (<i>59</i>)	-123	2.300 ; (<i>12</i>)	2.303 ; (<i>14</i>)	-142	1.603; (15)	1.6033; (2)	0.4.11
							1.6032; (2)	162
3.389 ; (<i>14</i>)	3.389 ; (<i>19</i>)	025	2.261; (15)	2.261; (7)	029	1.582 ; (5)	1.5834 ; (2)	-1.4.11
				2.259; (3)	142			
				2.258; (4)	215			
3.357; (13)	3.357; (11)	-106		2.196; (8)	143	1.557 ; (<i>6</i>)	1.5570; (6)	317
	3.355; (16)	031	2.192; (11)	2.192; (7)	-144			
3.294 ; (<i>45</i>)	3.292 ; <i>100</i>)	-124	2.161; (16)	2.159 ; (<i>19</i>)	-208	1.516; (8)	1.5157; (2)	165,
							1.5155; (5)	1.0.14
3.253 ; (<i>11</i>)	3.250 ; (<i>23</i>)	032	2.117; (9)	2.119 ; (<i>13</i>)	144		1. 4959; (3)	-1.5.10
						1.495; (<i>10</i>)	1. 4958; (2)	-3.2.10
							1. 4937; (8)	-1.1.15
3.207 ; (<i>12</i>)	3.208 ; (<i>21</i>)	115		2.027; (3)	051	1.463 ; (<i>12</i>)	1.4626;(11)	260
			2.025; (25)	2.025; (6)	039			
				2.024; (7)	0.1.11			
3.093; (24)	3.092 ; (<i>12</i>)	017	1.999; (9)	2.000; (3)	217	1.453; (7)	1.4526; (2)	-263
				2.000; (2)	226		1.4524; (5)	1.2.14
3.041; (48)	3.045; (40)	-125	1.936; (2)	1.937; (2)	-147			
	$3037 \cdot (26)$	026						

Примечание. **1** – ДРОН-2.0, СиКα – излучение, 1 град/мин, внутренний стандарт – кварц. Выделены линии, использованные для расчёта параметров ячейки; аналитики А.А. Агаханов, В.Ю.Карпенко; **2** – расчётные данные порошкограммы владимирита (Yang et al., 2010). Индексы hkl по данным <u>www.rruff.info</u>.

Рис. 3. ИК-спектр владимирита. Микротаблетка минерала с KBr, Specord 75 IR

Для сравнительной характеристики были также проанализированы образцы владимирита из систематической коллекции Минералогического музея им. А.Е. Ферсмана РАН (голотипный образец № 57263 из Хову-Аксы; № 94410 из шх. Cobriza, Чили), а также образец владимирита из Ightem, Бу-Азер, любезно предоставленный А.В. Касаткиным. Результаты анализа владимирита из Киргизии и других местонахождений приведены в таблице 1. Следует отметить небольшое, но устойчивое количество Sr во всех проанализированных образцах владимирита.

Порошкограмма владимирита получена на дифрактометре ДРОН-2.0 (СиК α -излучение, внутренний стандарт – кварц (табл. 2); пространственная группа $P2_1/c$, рассчитанные параметры элементарной ячейки: a = 5.820(4), b = 10.175(3), c = 22.90(1), $\beta = 96.92(4)$. ИК-спектр владимирита (рис. 3) демонстрирует хорошее соответствие с владимиритом из Марокко (Chukanov, 2014). По аналогии с опубликованными данными для схожего по анионному составу пикрофармаколита (Sumin de Portilla, 1974), основные полосы в спектре владимирита могут быть интерпретированы следующим образом: валентные колебания ОН-групп 2900–3550 см⁻¹, деформационные колебания молекул H₂O 1550–1650 см⁻¹, деформационные колебания As-OH 1000–1600 см⁻¹, валентные колебания As-O 400–910 см⁻¹.

Образование владимирита, как и ассоциирующих с ним арсенатов, по всей видимости, связано с приповерхностной разгрузкой вод, обогащённых мышьяковистыми комплексами, а также, за счёт изменения первичных минералов мышьяка.

Авторы благодарят К.Э. Ибраева, В.С. Гурского, В.В. Смирнова, Б. Токтогулова за помощь в организации и проведении полевых работ, М.Е. Генералова за помощь в подборе образцов из систематической коллекции ММФ и А.В. Касаткина за предоставленные для анализа образцы. Работа выполнена при финансовой поддержке внутреннего гранта СПбГУ № 3.50.2099.2013.

Литература

Белов С.Н., Аксенов В.А., Аксененко В.В. Государственная геологическая карта СССР (масштаб 1:50000). Южно-Ферганский ртутно-сурьмяный пояс. Туркестано-Алайская группа листов (объяснительная записка). Ош: 1989. 302 с.

Мокиевский В.А. Научная сессия Фёдоровского института совместно с Всесоюзным минералогическим обществом // ЗВМО. 1953. Ч. 82. № 4. С. 311–317.

Рогальский В.В. Золотоносность сурьмяно-ртутных месторождений юга Кыргызстана / Отчет Туркестано-Алайской ГПП о результатах поисковых работ 1988–1992 г. Ош: ЮКГЭ, 1992.

Сауков А.А. Чаувайское месторождение // Памирская экспедиция 1930 г. Тр. экспедиции. Вып. III (13). Полезные ископаемые. Л.: Изд-во АН СССР. 1932. С. 19–32.

Щербаков Д.И. К геохимии Алайского хребта // Памирская экспедиция 1928 года. Труды экспедиции. В. 7: Геология и геохимия. Л.: Изд-во АН СССР. 1931. С. 1–52.

Щербаков Д.И. Неопубликованные рукописи. Первые открытия ртутных и сурьмяных руд / В кн.: Дмитрий Иванович Щербаков. Жизнь и деятельность. М.: Наука, 1969. 288 с.

Яхонтова Л.К., Столярова Т.И. Новые данные о владимирите // ЗВМО. 1970. Ч. 99. № 3. С. 362–364.

Яхонтова Л.К. Магний-кальциевые и кальциевые арсенаты из зоны окисления арсенидного месторождения // Тр. Минералог. Музея АН СССР. 1968. В. 18. С. 154–167.

Chukanov N.V. Infrared spectra of mineral species: extended library. Dordrecht: Springer, 2014. 1726 p.

Favreau G., Dietrich J.E. Die Mineralien von Bou Azzer // Lapis. 2006. Bd. 31. S. 27-68.

Kampf A.R., Mills S. J., Nash B.P., Dini M.,Donoso A.A.M. Tapiaite, $Ca_5Al_2(AsO_4)_4(OH)_4 \cdot 12H_2O$, a new mineral from the Jote mine, Tierra Amarilla, Chile // Min. Mag. 2015. V. 79. P. 345–354.

Kolitsch U., Rieck B., Brandstätter F., Schreiber F., Fabritz K. H., Blaß G., Gröbner J. Neufunde aus dem altem Bergbau und den Schlacken von Lavrion (I) // Mineralien-Welt. 2014. Bd. 25. P. 60–75.

Pekov I.V. Minerals First Discovered on the Territory of the former Soviet Union. Moscow: Ocean Pictures Ltd. 1998. 369 p.

Pierrot R. Contribution à la minéralogie des arséniates calciques et calcomagnésiens naturels // Bull. de la Soc. Francaise Mineralogie et de Cristallographie. 1964. N. 87. P. 169–211.

Sumin de Portilla V.I. OH groups and the structure of picropharmacolite by IR spectroscopy // Am. Min. 1974. V. 59. P. 807–810.

Yang H., Evans S.H., Downs R.T., Jenkins R.A. The crystal structure of vladimirite, with a revised chemical formula, $Ca_4(AsO_4)_2(AsO_3OH) \cdot 4H_2O$ // Can. Min. 2011. V. 49. P. 1055–1064.