К МЕТОДИКЕ МИКРОЗОНДОВОГО АНАЛИЗА U-Th-СОДЕРЖАЩИХ МИНЕРАЛОВ

В. В. Хиллер, С. Л. Вотяков

Институт геологии и геохимии УрО РАН

U-Th-содержащие минералы – оксиды, фосфаты, тантало-ниобаты, карбонаты и силикаты тяжелых элементов имеют сложный переменный состав, в частности, концентрации ThO₂, UO₂, PbO варьирует в зависимости от их генезиса, структуры и возраста достаточно значимо – от 0, п до 70, от 0,0 п до 90 и от 0,0 п до п мас. %, соответственно. U-Th-минералы широко используются при химическом микрозондовом датировании геологических объектов, при этом для выполнения корректных оценок возраста необходимы прецизионные данные по их полному химическому составу. Микрозондовый анализ U-Th-минералов встречается с рядом проблем, в особенности при определении низких содержаний Pb (U, Th); детального рассмотрения требуют эффекты повреждения поверхности проб под пучком электронов высокой плотности за достаточно длительное время накопления спектра; актуально проведение анализа эффектов влияния фона и интерференции рентгеновских линий от разных элементов [Pyle et al., 2002; Jercinovic, Williams, 2005].

Цель работы – совершенствование методики микрозондового анализа U-Th-содержащих минералов, снижение погрешности определения содержания Pb, U, Th и повышения воспроизводимости данных.

Аналитическое оборудование. При выполнении анализов U-Th-минералов в лабораторной практике используются микрозонды двух основных фирм-производителей JEOL и Cameca: в [Suzuki et al., 1991] исследования выполнены на приборе JXA-5A; в [Montel et al., 1996] – на Camebax Micro; в [Rhede et al., 1996; Cocherie, Albarede, 2001; Williams, Jercinovic, 2002] – на Camebax SX-50; в [Suzuki, Kato, 2008] – на JCXA-733; в [Pyle et al., 2005] – на JEOL 733 Superprobe; в [Кориш, 2008; Пилюгин, Муханова, 2008] – на растровом микроскопе TESCAN VEGA II XMU с волновым спектрометром INCA Oxford; в [Петров, 2007; Романенко и др., 2008] – на JXA-8100. В настоящей работе анализ минералов выполнен на микроанализаторе SX 100 с пятью волновыми спектрометром весьма различны, что сказывается на качестве аналитических результатов.

Пробоподготовка и идентификация минералов. Монацит, уранинит, торит, торианит и коффинит из ряда уральских и сибирских объектов (из пегматитов Блюмовской копи Ильменогорского щелочного и Адуйского гранитного массива, Урал, из гранитоидов фундамента Западной Сибири и Ямала и др.) исследовались нами как в шашках, так и в полированных шлифах с углеродным напылением (последний вариант – предпочтительнее, поскольку позволяет изучать зерна в ассоциации с минераламиспутниками). Поиск и идентификация U-Th-минералов проводились по их энергодисперсионным спектрам и BSE-изображениям, последние обладали достаточно высокой яркостью вследствие высокого среднего атомного номера вещества, и в ряде случаев позволяли выявлять зональность зерен и проводить выбор аналитических точек.

Качественный анализ состава минералов включал запись спектра на пяти волновых спектрометрах с кристаллами ТАР, LPET (два спектрометра), PET и LiF; идентификацию характеристических линий и определение элементного состава проб (рис. 1). Измерения проводились при ускоряющем напряжении 15 кВ, силе тока пучка 250 нА, времени измерения интенсивности на пике для Th, U и Pb по 400 с (на фоне – 200 с), для Y, P, Si и Ce – 20 с (10 с на фоне), для остальных – по 10 с (табл.), что оптимизировало условия эксперимента по величине отношения сигнал/шум и степени радиационного

Рис. 1. Рентгеновские спектры монацита (пегматиты Адуйского массива, Средний Урал).

«выгорания» пробы под электронным пучком. Для каждого из анализируемых элементов подбирались параметры детектора и последовательность проведения измерений (табл.).

Элементное картирование зерен монацита проводилось на основе измерения интенсивности пика и фона (рис. 2а), уранинита – на основе измерения только интенсивности пика (рис. 2б), торита – на основе измерения интенсивности пика и BSE-изображения (рис. 2в). Преимущество первого способа – в наиболее точном определении содержания элементов при их низкой концентрации; второго – в экспрессности при высоком содержании элементов (высоком соотношении интенсивностей пика и фона); третьего – в выделении некоторых дополнительных характеристик состава зерен мине-

Таблица

Элемент	Линия	Станд. образец	Содержание, мас. %	Кристалл- анализатор	$Sin\Theta^*10^5$	Фон слева	Фон справа
Y	Lα	YPO ₄	48.35	TAP	25114	-450	450
Ca	Κα	Пироп	2.87	LPET	38387	-500	500
Pb	Μα	$Pb_2P_2O_7$	70.43	LPET	60416	-1000	1200
Р	Κα	CePO ₄	13.18	PET	70421	-300	400
Ce	Lα	CePO ₄	59.60	LiF	63576	-600	600
Si	Κα	Пироп	19.75	TAP	27738	-500	500
U	Μβ	UO_2	88.15	LPET	42459	-1100	650
Th	Μα	ThO ₂	87.88	PET	47301	-1000	700
La	Lα	LaPO ₄	59.39	LiF	66161	-600	600

Условия регистрации характеристических линий ряда элементов в U-Th-минералах

Рис. 2. Карты распределения интенсивности линий Th на пике и фоне в индивиде монацита (пегматиты Адуйского массива, Средний Урал, а), U и Th в уранините, Th, U и BSEизображение торита (фундамент Западной Сибири, б-в).

ралов при высоком соотношении интенсивности пика и фона. Карты интенсивности элементов Th, U, Pb пересчитывались в карты содержания их оксидов; при этом дополнительно проводилось картирование в лучах Y для учёта наложения его линии на линию Pb.

Количественный анализ состава минералов включал измерение характеристической интенсивности, выбор положения фона с двух сторон от пика, коррекцию содержания (РАР-коррекцию при анализе в точке, Х-РНІ-коррекцию при пересчёте карты интенсивности элемента в карту содержания оксида), учёт наложения линий (Th $M\gamma$ на U $M\beta$; Y $L\gamma_3$ на Pb $M\alpha$; Pr $L\beta_2$, Nd $L\beta$ и La $L\gamma$ на Eu $L\alpha$; Ce $L\beta$ на Nd $L\alpha$ и др.), выбор времени измерения интенсивности (на пике и фоне) и оценку погрешности определения элемента. Для расчёта статистических характеристик проводились повторные измерения. Все эксперименты выполнялись в лаборатории с контролируемым температурным режимом 20 ± 1 °C. Достигнуты пределы обнаружения ThO₂, UO₂ и PbO в монаците – 130, 60 и 53, в уранините – 590, 490 и 270 ppm, соответственно (при концентрациях ThO₂, UO₂ и PbO – 0.5–67, 0.04–88.37 и 0.03–4.58 мас. %). Полученные метрологические характеристики близки или даже несколько превосходят соответствующие значения, реализованные в публикациях последних лет [Dahl et al., 2005; Suzuki, Kato, 2008].

Работа выполнена в рамках программы «Научные и научно-педагогические кадры инновационной России» (госконтракт № 02.740.11.0727), программ Президиума РАН № 20 и 23, проекта УрО РАН «Состав, структура и физика радиационно-термических эффектов в минералах» и гранта РФФИ 11-05-00035.

Литература

Вотяков С. Л., Хиллер В. В., Поротников А. В., Щапова Ю. В. Химическое датирование U-Th-минералов: методические аспекты // Литосфера. 2010. № 4. С. 94–115.

Cocherie A., Albarede F. An improved U-Th-Pb age calculation for electron microprobe dating of monazite // Geoch. Cosmoch. Acta. 2001. V. 65. No. 24. P. 4509–4522.

Dahl P. S., Hamilton M. A., Jercinovic M. J., Terry M. P. Comparative isotopic and chemical geochronometry of monazite, with implications for U-Th-Pb dating by electron microprobe // Amer. Miner. 2005. V. 90. P. 619–638.

Jercinovic M. J., Williams M. L. Analytical perils in electron microprobe trace element analysis applied to geochronology // Amer. Miner. 2005. V. 90. P. 526–546.

Montel J.-M., Foret S., Veschambre M., Nicollet Ch., Provost A. Electron microprobe dating of monazite // Chem. Geol. 1996. V. 131. P. 37–53.

Pyle J. M., Spear F. S., Wark D. A. Electron microprobe analysis of REE in apatite, monazite and xenotime: Protocols and pitfalls // Rev. Mineral. Geochem. 2002. V. 48. P. 337–362.

Suzuki K., Adachi M., Tanaka T. Middle Precambrian provenance of Jurassic sandstone in the Mino Terrane, central Japan: Th-U-total Pb evidence from an electron microprobe monazite study // Sedim. Geol. 1991. V. 75. P. 141–147.