УСТАНОВЛЕНИЕ Yb³⁺ В МЕТАЛЛУРГИЧЕСКИХ ШЛАКАХ ФЕРРОСПЛАВНЫХ ПРОИЗВОДСТВ МЕТОДОМ КОМБИНАЦИОННОГО РАССЕЯНИЯ СВЕТА

Т. Н. Мороз¹, Д. С. Потапов², С. С. Потапов²

¹ – Институт геологии и минералогии СО РАН, г. Новосибирск, moroz@uiggm.nsc.ru ² – Институт минералогии УрО РАН, г. Muacc, spot@ilmeny.ac.ru

Иттербий, как и многие редкие элементы, по среднему содержанию в Земной коре находится в количествах, превышающих кларки таких обычных в повседневной жизни металлов, как ртуть, золото, серебро [Химическая энциклопедия, 1990]. Поэтому это, по словам В. И. Смирнова [Смирнов, 1967], не редкий элемент. Он был открыт в 1878 г. швейцарским химиком Мариньяком как примесь к элементу эрбию. Однако иттербий оказался смесью двух лантаноидов, которые в 1907 г. были разделены химиками Урбеном и независимо от него Ауэром. Вместе с другими РЗЭ Yb содержится в минералах бастнезите, монаците, фергусоните, ксенотиме и др. [Химическая энциклопедия, 1990].

В последние годы люминесценция редкоземельных элементов (РЗЭ) широко используется при создании лазерных материалов [Liu, Jacquier, 2005]. Так, ионы иттербия применяются для генерации лазерного излучения в ближнем инфракрасном диапазоне с длиной волны излучения 1.06–1.07 мкм. Поэтому практически значимым может явиться установленное нами на основании спектроскопических исследований наличие Yb³⁺ в шлаках ферросплавного производства металлургических заводов Урала. В данной работе методом колебательной КР спектроскопии были исследованы шлаки Саткинского металлургического завода (СМЗ) и Челябинского электрометаллургического комбината (ЧЭМК), геохимические особенности и детали минерального состава которых подробно представлены нами в настоящем сборнике (см. работу Д. С. Потапова и С. С. Потапова).

Спектры комбинационного рассеяния вещества шлаков регистрировались на Фурье-спектрометре фирмы Брукер RFS 100/S с возбуждением линией 1064 нм лазера

АИГ:Nd³⁺. При облучении вещества лазерным излучением помимо Релеевского рассеяния с той же частотой, которое отсекается с помощью фильтров, в КР спектрах наблюдается так называемое Рамановское рассеяние, состоящее из суммарных и разностных (Стокс и анти-Стокс) с возбуждающим излучением частот, обусловленных колебаниями молекул.

Рис. 1. КР спектры образцов САТ-04-04, САТ-09-04, САТ-22-04 и ЧЭМК-3, зарегистрированные на КР спектрометре с Фурье преобразованием, излучение 1064 нм. Волновые числа даны в Рамановском сдвиге относительно возбуждающей линии. Колебания в анти-Стоксовой области обычно на порядки меньше, чем в Стоксовой. Определяющим условием для регистрации КР-спектра является отсутствие люминесценции объекта, что достигается подбором соответствующего излучения. В то же время известен такой эффект, как возникновение интенсивных полос в анти-Стоксовой области спектра в оксидах РЗЭ при использовании 1064 нм излучения в КР измерениях [Мороз и др., 2005а; Мороз и др., 2005б; Biljan и др., 2004; Biljan и др., 2006], что побудило нас к этому исследованию.

КР-спектры при возбуждении в ближней ИК области для образцов СМЗ были в большей или меньшей мере замаскированы люминесцентным фоном (рис. 1; табл.). Например, для образцов САТ-04-04, САТ-09-04 и САТ-22-04 была зарегистрирована нехарактерная для колебательных КР спектров интенсивная полоса в анти-Стоксовой части спектра (колебательные частоты симметричны относительно возбуждающей $v_{\text{возбужд.}} \pm v_{\text{кол.}}$) (рис. 1, 2; табл.). На фоне люминесценции линии КР спектров минеральных включений стекол и шлаков СМЗ были мало интенсивными. Литературный обзор спектроскопической информации показал, что на близкой длине волны 980 нм излучает иттербиевый лазер. Для легированных Yb³⁺ стекол SiO₂-PbO-Na₂O-K₂O наблюдалась ИК флуоресценция с максимумом 1010 нм [Dai и др., 2005]. На базе кристалла титаната висмута Bi₁₂TiO₂₀ создан волоконно-оптический сенсор с оптическим контролем чувствительности на частоте 976 нм [Filippov и др., 2000]. Проведенное исследование методом КР-спектроскопии с возбуждением 1064 нм излучением синтетических Y2O3 и оксидов лантаноидов La₂O₃, Nd₂O₃, Gd₂O₃, Yb₂O₃, Lu₂O₃ показало наличие характерных максимумов люминесценции в ближней ИК-области в анти-Стоксовой области спектра [Biljan и др., 2004; Biljan и др., 2006], а для образцов Dy₂O₃, Ho₂O₃, Er₂O₃, Tm₂O₃ – в Стоксовой области спектра [Biljan и др., 2004]. Анализ спектров поглощения этих соединений в ближней ИК области позволил объяснить полученные при съемке КР спектров эффекты [Biljan и др., 2004; Biljan и др., 2006]. Полосы Yb₂O₃ в анти-Стоксовой области характеризуют эмиссию в результате релаксации в основное электронное состояние после поглощения 1064 нм излучения, тогда как поглощение в Стоксовой области не очень ясно. В случае Nd₂O₃ возможен механизм усиления КР спектра [Biljan и др., 2004]. Полосы других оксидов в анти-Стоксовой области по оптическим данным не могут быть объяснены поглощением 1064 нм излучения [Biljan и др., 2006]. Допирование

Таблица

CAT-04-04	CAT-09-04	CAT-22-04	H3MK-3	Y_2O_3 : Yb	Gd ₂ O ₃ :Yb	Lu ₂ O ₃ :Yb	CeO ₂ :Yb	Ga ₂ O ₃ :Yb
Данная работа				[Biljan и др., 2006]				
				10515w	10479w	10454w	10454w	
10268	10235	10266	10247	10239s	10239s	10241s	10349w	10238s
				10119w	10138w	10138w	10284w	9974m
	10007			9882w	9901w	10161w	10161w	
		9702	9742	9704m	9684s	9684s	10082w	9682m
							9710w	
							9611w	

Положение полос люминесценции в анти-Стоксовой области спектра в см⁻¹ (абсолютные единицы) Yb³⁺ в стеклах СМЗ и ЧЭМК и некоторых оксидах РЗЭ

Примечание: S – сильная, m – средняя, w – слабая по интенсивности полосы.

Рис. 2. Фрагменты КР спектров в анти-Стоксовой области образцов САТ-09-04, САТ-22-04 и ЧЭМК-3, зарегистрированные на спектрометре с Фурье преобразованием, излучение 1064 нм. Волновые числа даны в абсолютных единицах.

ионов иттербия в оксиды РЗЭ позволило однозначно отнести полосы в области около -840, -886 см⁻¹ (в единицах Рамановского сдвига) к 5 – 1 электронному переходу Yb³⁺. В этих же оксидах, недопированных Yb³⁺, так же зафиксированы подобные полосы, что объясняется большой чувствительностью используемого

метода регистрации к ионам иттербия, которые присутствуют в небольшом количестве в оксидах РЗЭ [Biljan и др., 2006].

Наличие полос -870, -837, -868 см⁻¹ в изученных нами образцах САТ-04-04, САТ-09-04 и САТ-22-04, соответственно, и -848 см⁻¹ в образце ЧЭМК-3 можно объяснить анти-Стоксовой люминесценцией Yb³⁺. Наличие других РЗЭ в количествах порядка г/т в исследуемых образцах, особенно в образцах САТ-09-04 и ЧЭМК-3, где наблюдаются интенсивные полосы в Стоксовой области спектра порядка 2550-2900 см⁻¹, характерные для ионов эрбия, не исключается [Biljan и др., 2004].

Таким образом, при регистрации КР спектров с использованием ИК излучения 1064 нм в образцах стекол СМЗ и ЧЭМК зафиксированы полосы люминесценции в анти-Стоксовой области, которые позволяют диагностировать ионы 3-х валентного иттербия в исследуемых образцах.

Авторы благодарят сотрудника Института катализа СО РАН (г. Новосибирск) Юрия Чесалова за помощь в регистрации КР спектров.

Работа выполнена при поддержке гранта Уральского отделения РАН для молодых ученых и аспирантов по теме: «Минералого-геохимические и спектроскопические особенности металлургических шлаков».

Литература

Мороз Т. Н., Костровский В. Г., Потапов С. С. Спектроскопические особенности техногенных шлаков Саткинского металлургического завода в инфракрасном диапазоне // Уральский минералогический сборник № 13. Миасс: ИМин УрО РАН, 2005. С. 282–300.

Мороз Т. Н., Костровский В. Г., Потапов С. С. Колебательные спектры и люминесценция в ближней инфракрасной области техногенных стекловатых шлаков Саткинского металлургического завода // Шестые Всероссийские научные чтения памяти ильменского минералога В. О. Полякова. Миасс: ИМин УрО РАН, 2005. С. 62–68.

Смирнов В. И. Рудные месторождения СССР за 50 лет Советской власти // Геология рудных месторождений. 1967. Т. 9. № 5. С. 3–19.

Химическая энциклопедия / Ред. И. Л. Кнунянц. М.: Советская энциклопедия, 1990. Т. 2. 671 с.

Biljan T., Roncevic S., Meic Z. and Kovac K. Non-vibrational features in NIR FT-Raman spectra of lanthanide sesquioxides // Chem. Phys. Letters. 2004. V. 395. Iss. 4–6. P. 246–252.

Biljan T., Roncevic S., Meic Z, Jurcic K., and Mestrovic E. Yb³⁺ as an origin of the strong anti-Stokes luminescence in NIR FT-Raman spectra of some lanthanide sesquioxides // Spectrochim. Acta. Part A. 2006. V. 63. P. 501–505.

Dai N. L., Hu L., Chen W., Boulon G., Yang J., Dai S., Lu P. Spectroscopic and fluorescence behaviors of Yb³⁺-doped SiO₂-PbO-Na₂O-K₂O glass // J. Luminescence. 2005. V. 113. Iss. 3–4. P. 221–228.

Filippov V. N., Starodumov A. N., Barmenkov Y. O., Makarov V. V. Fiber-Optic Voltage Sensor Based on Bi₁₂TiO₂₀ crystal // Applied Optics. 2000. V. 39. № 9. P. 1389–1393.

Liu G., Jacquier B. Spectroscopic properties of rare earths in optical materials. Edit. Hardcover. London: Springer, 2005.