СОПОСТАВЛЕНИЕ СТРУКТУРЫ СИЛИКАТОВ И ГЕРМАНАТОВ НАТРИЯ ПО ДАННЫМ СПЕКТРОСКОПИИ КОМБИНАЦИОННОГО РАССЕЯНИЯ

Т. Н. Иванова¹, О. Н. Королева^{1, 2}

¹ – Южно-Уральский Государственный Университет, г. Миасс, dom.79@mail.ru ² – Институт минералогии УрО РАН, г. Muacc, koroleva@mineralogy.ru

Силикатные расплавы относятся к важнейшему классу высокотемпературных оксидных систем и играют важную роль как в природе – магматические расплавы, так и в промышленности – шлаковые и стеклообразующие расплавы. Основной особенностью строения силикатных расплавов и их структурных аналогов, во многом определяющей их физико-химические свойства, является существование в них полимеризованных анионов различных размеров и форм, что в значительной степени ограничивает использование для их исследования методов рентгеновской дифракции. Эти анионы представляют собой разупорядоченные фрагменты кристаллических соединений, существующих в данных системах, строение которых зависит от вида центрального стеклообразующего катиона, типа и концентрации катионов-модификаторов, температуры и давления. Прямым структурным методом, позволяющим исследовать структуру расплавов непосредственно при высоких температурах является спектроскопия комбинационного рассеяния.

Рис. 1. Спектры КР расплавов системы x%Na₂O·(100-x)% SiO₂, где x = 0, 25, 33, 40, 50, 55, 60, 67.

На рисунке 1 показаны изменения высокочастотной (800–1200 см⁻¹) области спектров КР расплавов натриевосиликатной системы в зависимости от состава. В отличие от силикатных расплавов в спектре КР стеклообразного диоксида кремния не наблюдается интенсивных полос в высокочастотной области. При небольших добавках оксида щелочного или щелочноземельного металла в спектрах силикатных стекол появляется полоса с максимумом в области 1050-1100 см⁻¹. С увеличением содержания оксидовмодификаторов интенсивность этой полосы увеличивается и достигает максимума в стекле стехиометрического состава дисиликата; одновременно появляется новая поляризованная полоса с максимумом в области 930-950 см⁻¹. При дальнейшем увеличении концентрации оксида металла интенсивность первой полосы уменьшается, а второй – возрастает и достигает наибольшего значения в стекле состава метасиликата. Кроме этих двух полос в спектрах КР с повышенным содержанием катионов-модификаторов наблюдаются полосы в области 900 и 850 см⁻¹. Их интенсивности максимальны при составах диорто- и ортосиликата соответственно [McMillan, 1984]. Следует отметить, что в спектрах КР силикатных расплавов состава 67 мол. % Na₂O присутствует интенсивная полоса в области 1050 см⁻¹ соответствующая колебаниям ионов CO_3^{2-} .

Исследования силикатных стекол и расплавов методами спектроскопии комбинационного рассеяния показали, что строение и свойства этих неупорядоченных систем могут быть описаны на основе тетраэдров SiO₄ с различным соотношением немостиковых и мостиковых атомов кислорода – структурных единиц Q^n , где индекс n обозначает число мостиковых атомов кислорода. Тетраэдры SiO₄ разного типа, соединяясь друг с другом мостиковыми связями Si-O-Si, образуют неупорядоченную сетку в стеклах или полимеризованные анионные группировки в расплавах, которые, в частности являются «строительными» единицами при кристаллизации расплавов.

На рисунке 2а представлен результат сопоставления спектров твердых и жидких фаз состава 50%Na₂O 50%SiO₂. Видно, что основные интенсивные пики спектра расплава соотносятся с пиками стекла и кристаллической фазы. Наблюдается небольшое увеличение относительной интенсивности полос при увеличении температуры и сдвиг положения всех полос в низкочастотную область. Кроме того, наблюдается уширение всех полос с ростом температуры. На рисунке 26 представлен результат моделирования высокочастотной области расплава метасиликата натрия при температуре 1097 К. Высокочастотная область представлена как суперпозиция пяти линий, имеющих гауссовскую форму. Полоса с максимумом в области около 829 см⁻¹ обусловлена валентными колебаниями структурных единиц Q1', которые связаны мостиковыми связями с цепочечными структурами. Полосы с максимумами в области 903 см⁻¹ и 950 см⁻¹ связаны с колебаниями структурных единиц $Q^{2'}$ и Q^{2} . Первые связаны с концевыми тетраэдрами Q^{1} , вторые относятся к тетраэдрам, связанным с такими же единицами Q^2 , то есть являющимися частью цепочек. Характерные полосы для единиц Q³ и Q³ наблюдается в области 1000 и 1040 см⁻¹. Доминирующей полосой является полоса в области 950 см⁻¹, что свидетельствует о том, что силикатные анионы в расплавах, также как и сетка стекол стехиометрического состава метасиликата, построены в основном из структурных единиц Q^2 , являющихся элементами кремнекислородных цепочек.

Германаты являются структурными аналогами силикатов, но их существенное отличие заключается в том, что атомы германия могут находится не только в тетраэдрической, но и более высокой шестерной и пятерной координации по кислороду. Поскольку для силикатов это возможно только при очень высоких давлениях, то германатные системы можно рассматривать как структурный аналог высокобарических силикатных систем [Пущаровский, 1986].

Спектры комбинационного рассеяния расплавов натриевогерманатной системы представлены на рисунке 3. В отличие от силикатных систем на начальных этапах взаимодействия оксида-модификатора с GeO₂ происходят значительные изменения в области средних частот. Полосы в этой области одни авторы соотносят с колебаниями трехмерных и четырехмерных колец [Hendersn, 2002], состоящих из тетраэдров GeO₄, а другие – с колебаниями пяти и шестикоординированного атома германия [Verweij, 1979] в сетке стекла.

Также как в силикатных системах в германатах существуют структурные единицы Q^n , которые представляют собой тетраэдры с различным числом мостиковых атомов кислорода. Для более детального изучения структурных перестроек высокочастотная область спектров была представлена, как суперпозиция линий гауссовской формы с максимумами около 730, 790 и 860 см⁻¹, соответствующих колебаниям связей тетраэдров Q^1 , Q^2 и Q^3 , соответственно (рис. 4). Анализ спектров германатных стекол показывает, что с увеличением содержания оксида-модификатора в высокочастотной области спектра КР происходят изменения, связанные с перераспределением структурных группировок, которое свидетельствует об образовании немостиковых атомов кислорода.

Рис. 2. Спектры КР кристалла, стекла и расплава состава $50\%Na_2O\cdot50\%SiO_2$ (а) и пример моделирования высокочастотной области спектра КР расплава метасиликата натрия при T = 1097 K (б).

Рис. 3. Спектры КР расплавов системы x%Na₂O·(100-x)% GeO₂, где x = 10, 20, 30, 40 и 50 мол. %..

Среднечастотная область спектров стекол и расплавов натриевогерманатной системы моделируется двумя линиями гауссовской формы. Результат моделирования на примере стекла и расплава состава 40%Na₂O·60%GeO₂ представлен на рисунке 4. Полосу с максимумом около 518 см⁻¹ относят к симметричным колебаниям связи Ge-O-Ge в трехмерных кольцах, состоящих из тетраэдров GeO₄ [Henderson, 2002]. Колебания, лежащие в области 590–600 см⁻¹, относят к симметричным валентным колебаниям связей Ge^{VI}-O [Verweij, 1979; Kamitsos, 1996]. Очевидно, что с увеличением содержания Na₂O интенсивность полос среднечастотной области спектров КР уменьшается, и они становятся едва различимы в спектре расплава 50%Na₂O·50GeO₂.

Сравнение спектров стекла и расплава состава 40 мол. % Na₂O показывает, что при плавлении плечо 590 см⁻¹, которое обусловлено присутствием шестикоординированного атома германия, уменьшается. Это свидетельствует о переходе атома германия из шестой в четверную координацию по кислороду с одновременным образованием немостиковых атомов кислорода. Кроме того, наблюдается увеличение относительной интенсивности полосы 790 см⁻¹, связанной с колебаниями структурных единиц Q^2 .

Таким образом, изучена зависимость структуры стекол и расплавов силикатов и германатов натрия от содержания катиона модификатора. Выявлены особенности структурных перегруппировок в германатных расплавах, связанные со способностью атома германия менять своё координационное число.

Рис. 4. Спектры КР кристалла, стекла и расплава состава 40%Na₂O·60%GeO₂ и пример моделирования спектров при T = 293, 1373 К.

Работа выполнена при поддержке гранта РФФИ 10-05-96044-р_урал_а, гранта Президента Российской Федерации для поддержки молодых российских ученых (МК-109.2011.5) и гранта РНП 2.1.1/10727.

Литература

Пущаровский Д. Ю. Структурная минералогия силикатов и их синтетических аналогов. М.: Недра, 1986. 160 с.

Henderson G. S. Germanium coordination and the germanate anomaly // Eur. J. Mineral. 2002. 14. P. 733–744.

Kamitsos E. I. et al. Raman and infrared Structural Investigation of xRb₂O·(1-x)GeO₂ Glasses // J. Phys. Chem. 1996. P. 11755–11765.

McMillan P. Structural studies of silicate glasses and melts – application and limitation of Raman spectroscopy // Amer. Mineral. V. 69, № 7–8. 1984. P. 622–644.

Verweij H. The structure of lithium, sodium and potassium germinate glasses, studied by Raman scattering // Journal of Non-crystalline Solids 34. 1979. P. 81–99.