ПОЛУЭМПИРИЧЕСКОЕ АТОМИСТИЧЕСКОЕ МОДЕЛИРОВАНИЕ СТРУКТУРЫ И СВОЙСТВ ПРИМЕСНЫХ ДЕФЕКТОВ У³⁺ И Р⁵⁺ В ЦИРКОНЕ И Zr⁴⁺ И Si⁴⁺ В КСЕНОТИМЕ

Д. А. Замятин, Ю. В. Щапова, С. Л. Вотяков

Институт геологии и геохимии УрО РАН, г. Екатеринбург

Природные цирконы могут содержать значительное количество примесных ионов Y^{3+} и P^{5+} вплоть до образования твердых растворов с ксенотимом: содержание последнего в негидратированном цирконе может достигать 5 мол. %, а в гидратированном – 20 мол. %. Негидратированный ксенотим может содержать до 1 мол. % циркона, гидратированный – до 30.4 мол. %; при этом часто одновременно с иономи Zr^{4+} ксенотим содержит и ионы Th^{4+} [Forster, 2006]. Понимание механизмов вхождения гетеровалентных примесей Y^{3+} , P^{5+} в циркон и Zr^{4+} , Si^{4+} в ксенотим, схем компенсации (локальной-нелокальной) их избыточных-недостаточных зарядов, предпочтительных форм распределение примесей (парное или взаимно статистически неупорядоченное) по катионным и междоузельным позициям – актуальная кристаллохимическая задача. Важным для понимания механизма распределения примесей в одной и другой подрешетках относительно друг друга представляется моделирование четырехкомпонентного твердого раствора с двумя катионными подрешетками.

Цель работы – моделирование структурной релаксации матрицы циркона и ксенотима, энергии образования одиночных точечных дефектов замещения $Y^{3+} \rightarrow Zr^{4+}$, $P^{5+} \rightarrow Si^{4+}$ в цирконе и $Zr^{4+} \rightarrow Y^{3+}$, $Si^{4+} \rightarrow P^{5+}$ в ксенотиме, и парных дефектов замещения $(Y^{3+}, P^{5+}) \rightarrow (Zr^{4+}, Si^{4+}), (Zr^{4+}, Si^{4+}) \rightarrow (Y^{3+}, P^{5+}).$

Memod. Равновесные структуры минералов получены моделированием в рамках программы GULP [Gale, 1997]; последняя основана на представлении кристалла совокупностью точечных ионов, участвующих в дальнодействующих электростатических (кулоновских) и короткодействующих взаимодействиях. При записи суммарной энергии межатомных взаимодействий кулоновские потенциалы притяжения-отталкивания

ионов $V_{ij}^{3\pi}(r_{ij}) = \frac{e^2 Z_i Z_j}{r_{ij}}$ суммируются по всему кристаллу с использованием метода

Эвальда [Хеерман, 1990]. Короткодействующие взаимодействия моделируются потен-

циалом Букингема $V_{ij}^{\kappa op}(r_{ij}) = A_{ij} \exp(-\frac{r_{ij}}{\rho_{ij}}) - C_{ij}r_{ij}^{-6}$ и ограничиваются радиусом

R_{max} = 6–12 А. Для имитации эффектов ковалентности связей Si-O (в частности, для учета их направленности) применен трехчастичный угловой деформационный потенциал. Параметры расчетных потенциалов для ионов Si, O, P согласно [Catlow, 1992], для Zr, Y, согласно [Lewis, 1985]. Двойные дефекты были рассчитаны в модели вложенных сфер радиусами 8 А и 14 А. Рассчитанные и экспериментальные структурные характеристики бездефектного циркона и ксенотима приведены в таблице 1.

Модели дефектов. Минералы циркон и ксенотим изоструктурны, кристаллизуются в тетрагональной сингонии. В структуре есть две различные катионные позиции – одна додекаэдрическая A (Zr, Y), другая тетраэдрическая B (Si, P). Замещение иттрием циркония находится в окружении шести катионов кремния на расстоянии 3.078 A (Si₅, Si₆) и 3.597 A (Si₁, Si₂, Si₃, Si₄), первые симметрийно не эквивалентны вторым (рис. 1). Поэтому достаточно рассмотреть вариант размещения компенсатора Si₁, Si₅. Проведено исследование релаксации ближнего окружения (параметр релаксации σ) и определены энергии образования дефектов замещения E_{π} в цирконе $P \rightarrow Si$, $Y \rightarrow Zr$, (Y, P) \rightarrow (Zr, Si_{1.5}) и в ксенотиме Si \rightarrow P; Zr \rightarrow Y; (Zr, Si) \rightarrow (Y, P_{1.5}).

Рис. 1. Фрагменты кристаллической решетки циркона с изоморфным примесным ионом Y (a) и P (б).

Энергия образования дефектов. Поскольку энергии образования парных дефектов (Y, P) \rightarrow (Zr, Si₁) и (Y, P) \rightarrow (Zr, Si₅), (Zr, Si) \rightarrow (Y, P₁) и (Zr, Si) \rightarrow (Y, P₅) отличаются менее, чем на 0.01 % можно считать, что распределение замещений в катионной подрешетке *B* в каком-либо из шести положений вблизи замещения в катионной подрешетке *A* равновероятны. Сумма энергий образования уединенных дефектов P \rightarrow Si и Y \rightarrow Zr в цирконе –16.39 эB, дефектов Si \rightarrow P, Zr \rightarrow Y в ксенотиме 20.04 эB больше энергий образования соответствующих парных дефектов (табл. 2), значит энергетически выгоднее группирование таких дефектов (имеет место механизм компенсации).

Параметры, А	Рассчет	Эксперимент*	Отклонение, %							
Циркон										
V	260.23	261.13	-0.34							
a, b	6.5013	6.607	-1.60							
с	6.1567	5.982	2.92							
$Zr-O^{c}(4)$	2.0994	2.1304	-1.46							
$Zr-O^{e}(4)$	2.1695	2.2688	-4.38							
Si-O	1.6302	1.6223	0.49							
Ксенотим										
V	293.53	285.54	2.80							
a, b	6.8658	6.878	-0.18							
с	6.227	6.036	3.16							
$Y-O^{c}(4)$	2.3299	2.2577	3.20							
$Y-O^{e}(4)$	2.4436	2.5164	-2.89							
P-O	1.5397	1.5365	0.21							

Таблица 1 Рассчитанные и экспериментальные структурные характеристики циркона и ксенотима

Примечание. * – параметры структуры по данным [*http://database.iem.ac.ru/mincryst/*].

Локальная структура дефектов. Для оценки степени искажения полиэдров был рассчитан параметр релаксации полиэдров σ, который учитывает отклонения длин связей в полиэдре, включающем дефект находящемся ИЛИ вблизи дефекта от длин связей в полиэдре бездефектной матрицы (если в центре полиэдра находится Zr или Si, то бездефектной матрицей считается циркон, для Ү и Р бездефектной является структура ксенотима). σ принимает значения от 0 до 1.

$$\sigma = \sqrt{\frac{1}{4} \sum_{i=1}^{3} \left(\frac{R_i - R_{0i}}{R_{0i}}\right)^2}$$

Таблица 2

	$P \rightarrow Si^{(1)}$	$Y \rightarrow Zr^{2)}$	$(Y, P) \rightarrow$ $(Zr, Si_1)^{2}$	$(Y, P) \rightarrow$ $(Zr, Si_5)^{2)}$	P^{1}	$Zr \rightarrow Y^{2)}$	$(Zr, Si) \xrightarrow{\rightarrow} (Y, P_1)^{2)}$	$(Zr, Si) \xrightarrow{\rightarrow} (Y, P_5)^{2)}$
$E_{a\phi}, eV$	-50.41	34.02	-16.95	-16.98	51.43	-31.39	19.19	19.23
σ (Si ¹ O ₄)	0.005	0.008	0.015	0.021	0.006	0.02	0.019	0.019
σ (Si ⁵ O ₄)	_	0.011	_	_	-	0.019	_	-
σ (Zr ¹ O ₈)	0.036	0.053	0.056	0.066	0.042	0.044	0.059	0.075
σ^{e} (Zr ¹ O ₈)	0.009	0.001	0.009	0.034	0.011	0.005	0.005	0.042
σ^{c} (Zr ¹ O ₈)	0.034	0.053	0.055	0.057	0.040	0.044	0.059	0.063
σ (Zr ⁵ O ₈)	0.036	_	_	_	0.041	_	_	_
σ^{e} (Zr ⁵ O ₈)	0.036	_	_	_	0.034	_	_	_
σ^{c} (Zr ⁵ O ₈)	0.005	_	_	_	0.023	_	_	_

Параметр структурной релаксации полиэдров (σ, отн. ед.) и энергии образования дефектов (Е_{дф}, эВ)

Примечание.

¹⁾ – обозначения «Siⁱ, Zrⁱ » соответствуют нумерации катионов, приведенной на рис. 1а.

²⁾ – нумерации рисунка 1б.

Серым цветом выделены параметры релаксации полиэдров замещения, невыделенными остались параметры релаксации полиэдров матрицы-хозяина. σ^{e} – рассчитан для четырех длинных расстояний Me-O^e, σ^{c} – рассчитан для четырех коротких расстояний Me-O^e.

Уединенные замещения обладают большей симметрией по сравнению с парными дефектами и вносят, как правило, центрально симметричные изменения в ближайшее окружение дефекта (пропорциональное удлинение или укорочение всех связей). Этот эффект наблюдается в дефектах $P \rightarrow Si$, $Y \rightarrow Zr$, $Si \rightarrow P$, $Zr \rightarrow Y$. В случае же парного гетеровалентного дефекта ближайшее окружение оказывается в поле двух точечных зарядов разного знака (диполь), что определяет большие различия в длинах связи, симметрия понижается (характерно для $(Y,P) \rightarrow (Zr,Si_1)$, $(Y,P) \rightarrow (Zr,Si_5)$, $(Zr, Si) \rightarrow (Y, P_1)$, $(Zr, Si) \rightarrow (Y, P_5)$.

Тетраэдры SiO₄, PO₄ в отсутствии локального компенсатора в тетраэдрической позиции (заряд дефекта +1 или –1) более устойчивы, чем в присутствии компенсатора (заряд парного дефекта равен нулю). Для оценки изменения длин связей катионов додекаэдрической позиции отдельно рассчитали параметр релаксации σ^c , σ^e для укороченных Me-O^c и удлиненных Me-O^e связей и общий σ . Первые соответствуют связям вдоль оси *c*, вторые вдоль осей *a*, *b*. Во всех случаях удлиненные связи являются значительно более устойчивыми по сравнению с укороченными (на порядок), даже в случае расположения компенсатора по оси *c* относительно додекаэдра. В случае минимальной симметрии парного дефекта (Y,P) \rightarrow (Zr,Si₅), (Zr, Si) \rightarrow (Y, P₅) отличие параметров релаксации в два раза. $\sigma^c < \sigma^e$ только в случае, когда додекаэдр катиона-хозяина располагается по оси *a* или *b* относительно замещения. Значит, в промежуточных составах этого твердого раствора должны проявляться свойства анизотропии.

Работа выполнена в рамках программы «Научные и научно-педагогические кадры инновационной России» (госконтракт № 02.740.11.0727), программ Президиума РАН № 20 и 23, проекта УрО РАН «Состав, структура и физика радиационно-термических эффектов в минералах» и гранта РФФИ 09-05-00-513, 11-05-00035.

Литература

Forster H. J. Composition and origin of intermediate solid solutions in the system thoritexenotime-zircon-coffinite // Lithos. 2006. V. 88, Iss. 1–4. P. 35–55.

Finch R. J., Hanchar J. M. Structure and chemistry of zircon and zircon-group minerals // Zircon. Reviews in Mineralogy and Geochemistry. Eds. Hanchar J. M., Hoskin P. W. O. 2003. V. 53. P. 1–25.

Gale J. D. GULP: a computer program for the symmetry-adapted simulation of solids // J. Chem. Soc. Faraday Trans. 1997. V. 93(4). P. 629–37.

Lewis G. V., Catlow C. R. A. Solid State Phys. // J. Phys. C. 1985. V. 18. P. 1149-1161.

Schrvder K.-P., Sauer J., Leslie M., Catlow C. R. A., Thomas J. M. Chem. Phys. Lett., 188, 320 (1992).

Хеерман Д. В. Методы компьютерного эксперимента в теоретической физике. М.: Наука, 1990. 176 с.