ТВЕРДЫЕ РАСТВОРЫ МЕЖДУ РОМБОЭДРИЧЕСКОЙ И МОНОКЛИННОЙ МОДИФИКАЦИЯМИ РЕДКОЗЕМЕЛЬНЫХ ХРОМОВЫХ БОРАТОВ – СТРУКТУРНЫХ АНАЛОГОВ МИНЕРАЛА ХАНТИТА

Е. А. Добрецова, Е. Ю. Боровикова, В. С. Куражковская, О. А. Гурбанова

Московский государственный университет им. М. В. Ломоносова, Геологический факультет, г. Москва, elena-dobrecova@yandex.ru

Хантит CaMg₃(CO₃)₄ кристаллизуется в пространственной группе R32 с одной формульной единицей в элементарной ячейке. В структуре существует 3 типа координационных полиэдров: тригональные призмы CaO₆, октаэдры MgO₆ и два типа треугольных CO₃ групп. Атомы углерода первого типа расположены на осях 3-его порядка, группа CO₃ (1) имеют позиционную симметрия D₃. Остающиеся три кристаллографически эквивалентных группы CO₃ (2) расположены вокруг оси 3 и обладают позиционной симметрией C_2 [Dollase, Reeder, 1986].

Хромовые бораты редкоземельных элементов $RCr_3(BO_3)_4$ образуются в двух пространственных группах R32 и C2/c в зависимости от условий роста и типа редкоземельного элемента. Ромбоэдрические бораты изоструктурны природному минералу хантиту. В структуре вместо Са в тригональных призмах находятся атомы редкоземельных элементов, в октаэдрических позициях Mg – атомы Cr, а треугольники CO₃ заменены BO₃ треугольниками. В моноклинной группе имеются два треугольных иона BO₃³⁻ в общем положении.

Две модификации боратов имеют политипную природу, в каждой из них можно выделить два различных типа слоев одинаковых для обеих разновидностей. В ромбоэдрическом политипе один тип слоев размножен вокруг другого осями 2, а в моноклинном – центрами инверсии [Белоконева, Тимченко, 1983].

Интерес к этим боратам вызван комбинацией их функциональных характеристик – нелинейно-оптических, лазерных, активно–нелинейных и др. – в сочетании с высокой термической, химической и механической устойчивостью и уникальной теплопроводностью [Леонюк, 2008]. Кроме того они интересны своими уникальными магнитными и ферроэлектрическими свойствами, в частности, сосуществованием ферроэлектрического и ферромагнитного упорядочений.

В виду чрезвычайной близости строения, эти соединения практически невозможно различить методами порошковой рентгенографии. Поскольку нелинейно-оптически-

Таблица 1

Параметры элементарной ячейки твердых растворов Nd_xGd_{1-x}Cr₃(BO₃)₄ для x = 0.1–0.9

Х	а	С
0.1	9.4919	7.4719
0.2	9.5070	7.4825
0.3	9.4978	7.4798
0.4	9.5061	7.4807
0.5	9.5149	7.4746
0.6	9.5062	7.4833
0.7	9.5203	7.4868
0.8	9.5353	7.4885
0.9	9.5011	7.5012

ми свойствами обладают только фазы с ацентричной ромбоэдрической структурой, важно найти доступный метод их разделения. Таким методом оказалась ИК спектроскопия с использованием фактор-группового анализа колебаний сложных ионов ВО3³⁻. По характеру ИК спектров было выявлено, что бораты с крупными редкоземельными катионами La -Nd кристаллизуются исключительно в моноклинной модификации, с Eu, Gd - в ромбоэдрической. Образование боратов с другими редкоземельными катионами зависит ОТ температуры кристаллизации [Добрецова и др., 2010].

В настоящей работе методами дифрактометрии и ИК спектроскопии исследуются твердые растворы NdCr₃(BO₃)₄ (*C*2/*c*) – GdCr₃(BO₃)₄ (*R*32) с целью определения состава, при котором происходит переход между ними. Как уже говорилось выше, дифрактограммы всех исследованных фаз подобны, поэтому параметры ячейки рассчитывались для *гексагональной* фазы. В таблице 1 приведены значения параметров *a* и *c* в зависимости от содержания Nd³⁺.

Как видно из таблицы, параметр *а* элементарной ячейки твердых растворов вплоть до x = 0.6 колеблется в диапазоне 9.49–9.51 Å, а параметр *c* в диапазоне 7.47–7.48 Å. При x = 0.7–0.8 наблюдается заметный рост параметров, особенно параметра *a*. При x = 0.9 происходит резкое понижение значения параметра элементарной ячейки *a* и рост параметра *c*, что может свидетельствовать о кристаллизации этого соединения в другой пространственной группе.

Рис. 1. ИК спектры твердых растворов $Nd_xGd_{1-x}Cr_3(BO_3)_4$ для x = a) 0, б) 0.2, в) 0.6, г) 0.7, д) 0.9, е) 1.

На рисунке 1 приведены ИК спектры твердых растворов в ряду $Nd_xGd_{1-x}Cr_3(BO_3)_4$. Полосы в области 1390-1100 см⁻¹ относятся к асимметричным валентным коле-баниям BO_3^{3-} ионов, в области 1040–900 см⁻¹ – к симметричным валентным, а в области 780-600 см⁻¹ - к деформационным колебаниям этих ионов. Область 500-400 см⁻¹ отвечает трансляционным движениям Cr³⁺. Ранее [Добрецова и др., 2010] было показано, что область валентных колебаний в ИК спектре является наиболее информационной для разделения этих боратов. Фактор-групповой анализ колебаний ВО3³⁻ ионов в структурах этих соединений допускает появление 4 полос асимметричных валентных колебаний в ИК спектрах ромбоэдрических фаз и 8 полос – в ИК спектрах моноклинных соединений.

В исследованной серии твердых растворов при изменении x от 0 до 0.6 вид ИК спектра меняется мало, сохраняя черты, характерные для ромбоэдрической фазы: 4 полосы валентных колебаний в области 1260–1100 см⁻¹. Начиная с x = 0.3 до x = 0.6

на фоне полосы ~ 1320 см⁻¹ появляются плечи со значениями частот, характерных для ИК спектров моноклинных фаз (рис. 1в). При x = 0.7 и 0.8 вид спектров заметно меняется: возникает типичная для спектра моноклинного бората полоса ~ 1280 см⁻¹, проис-

ходит расщепление полосы при ~ 1200 см⁻¹ (рис. 1г) ИК спектр $Nd_{0.9}Gd_{0.1}Cr_3(BO_3)_4$ является типичным для моноклинного бората: наблюдается 8 полос валентных асимметричных колебаний и 4 полосы валентных симметричных колебаний в области 1040– 914 см⁻¹ (рис. 1д)

Таким образом, по данным ИК спектроскопии ромбоэдрическая структура в хромовых боратах сохраняется до x = 0.6. Фазы с x = 0.7-0.8 являются переходными от ромбоэдрической к моноклинной структуре. И наконец, при x = 0.9 образуется чистая моноклинная фаза. Данные рентгенографии согласуются с этими выводами.

Работа выполнена при поддержке гранта Президента РФ МК-143.2010.5.

Литература

Dollase W. A., Reeder R. J. // Am. Mineral. 1986. V. 71. Р. 163. *Белоконева Е. Л., Тимченко Т. И. //* Кристаллография. 1983. 28. № 6. С. 1118–1123. *Добрецова Е. А., Боровикова Е. Ю., Мальцев В. В. //* Минералы: строение, свойства, методы исследования. Миасс: УрО РАН, 2010. С. 151–153. *Леонюк Н. И. //* Кристаллография. 2008. 53. № 2. С. 349.