ОПРЕДЕЛЕНИЕ ВАЛЕНТНОГО СОСТОЯНИЯ ЖЕЛЕЗА В ПИКРОИЛЬМЕНИТАХ МЕТОДАМИ РЕНТГЕНОВСКОГО ЭЛЕКТРОННО-ЗОНДОВОГО МИКРОАНАЛИЗА И РЕНТГЕНОФЛУОРЕСЦЕНТНОГО АНАЛИЗА

В. М. Чубаров, Л. Ф. Суворова, С. И. Костровицкий, А. Л. Финкельштейн

Институт геохимии СО РАН, г. Иркутск, master-17@rambler.ru

Пикроильменит относится к числу важнейших типоморфных минералов кимберлитовых пород. Являясь минералом-спутником алмазов, он содержит в себе генетическую информацию об условиях формирования кимберлитов, необходимую для поисков месторождений [Костровицкий и др., 2006]. Для пикроильменита наиболее характерны широкие вариации гематитового минала, отражающего изменчивость окислительновосстановительных условий кристаллизации минерала. Так, если пикроильменит, парагенетически связанный с алмазами (в виде включений в алмазах), практически не содержит Fe₂O₃, то в макро-, мегакристном пироильмените из кимберлита содержание гематитового минала может достигать 25-27 % [Гаранин и др., 1984]. Электронно-зондовый рентгеновский микроанализ (РМА) является одним из основных методов определения состава пикроильменитов, при этом содержания минала Fe₂O₃ в минералах обычно рассчитывается исходя из стехиометрических соотношений. Результаты определения содержания Fe₂O₃ в пикроильмените методами мокрой химии не всегда соответствуют составу отдельных кристаллов ввиду нередкой неоднородности составов исследуемых зерен, а также из-за вероятности окисления в процессе подготовки и анализа образца.

Соотношение Fe^{2+}/Fe^{3+} в минералах можно оценить на рентгеновском электронно-зондовом микроанализаторе по отношению интенсивностей La₁ 2 и LB линий [Albee. Chodos, 1980]. Предложены методики количественного определения валентного состояния железа методом РМА в амфиболах и пироксенах. Погрешность определения отношения Fe²⁺/Fe³⁺ составляет 6–20 % [Легкова и др., 1982; Таскаев и др., 1986]. Предложен метод определения содержания разновалентных ионов железа, марганца и других элементов с использованием эффекта поглощения La-линии элемента LIII-краем поглощения того же элемента, величина которого зависит от валентности элементов [Куликова и др., 1998]. Рентгенофлуоресцентный анализ (РФА) широко используют для определения породообразующих элементов в горных породах, он обеспечивает высокую производительность и сравнительно низкие затраты на пробоподготовку. Влияние химической связи на интенсивность линий спектра железа и соседних элементов проявляется для линий L-серии, а также для сравнительно слабых сателлитов КВ-линии железа [Narbutt, 1980], обусловленных переходами электронов из состояния в валентной М-оболочке на внутренние К-оболочки атома. В отличие от РМА, где для определения валентного состояния железа используется L-серия рентгеновского излучения, при РФА может быть использована К-серия рентгеновского флуоресцентного спектра [Филиппов и др., 2001]. Было показано [Чубаров, Финкельштейн, 2010], что для определения валентного состояния железа в образцах горных пород и железных руд целесообразно использовать отношение интенсивностей линий К-серии при измерении в пике линии в первом порядке отражения, однако использование отношения линий L-серии в качестве аналитического сигнала также возможно.

В данной работе приведены оценки погрешности определения валентного состояния железа по К- и L-сериям рентгеновского спектра в пикроильменитах. Проанализированы образцы пикроильменитов из трубок Удачная, Мир и др. Измерения выполнены на кристалл-дифракционном серийном рентгенофлуоресцентном спектрометре S4 Ріопеет и электронно-зондовом рентгеновском микроанализаторе JXA-8200. В качестве аналитического сигнала использовали отношения интенсивностей линий Kβ_{2.5}/Kβ_{1.3} и Lβ/Lα_{1.2}.

Для характеристики валентного состояния железа использовали выражение:

$$n = \frac{\frac{2 * C(FeO)}{Mr(FeO)}}{\frac{C(FeO)}{Mr(FeO)} + \frac{C(Fe_2O_3)}{Mr(Fe_2O_3)}} + \frac{\frac{3 * C(Fe_2O_3)}{Mr(Fe_2O_3)}}{\frac{C(FeO)}{Mr(FeO)} + \frac{C(Fe_2O_3)}{Mr(Fe_2O_3)}},$$
(1)

где C(FeO) и C(Fe₂O₃) – содержание FeO и Fe₂O₃ в мас. %, Mr (FeO) и M_r (Fe₂O₃) – молекулярная масса FeO и Fe₂O₃, коэффициенты 2 и 3 соответствуют валентному состоянию железа в оксидах FeO и Fe₂O₃.

На рисунке 1 приведены графики зависимостей валентного состояния железа (n) от отношений интенсивностей линий $IK\beta_{2,5}/IK\beta_{1,3}$, полученных на кристалланализаторе LiFH (puc. 1, *a*) и отношений $IL\beta/IL\alpha_{1,2}$, полученных на кристалланализаторе TAP (puc. 1, *б*), а также величины коэффициентов корреляции R^2 .

Рис. 1. Зависимость валентного состояния железа (n) от отношений $IK\beta_{2.5}/IK\beta_{1.3}$ (a) и $IL\beta/IL\alpha_{1.2}$ (б) в образцах минералов на рентгеновском микроанализаторе.

Из рисунка 1 видно, что между величинами отношений ILβ/ILα_{1,2} и IKβ_{2,5}/IKβ_{1,3}, полученными на рентгеновском микронализаторе, и валентным состоянием п наблюдается хорошая корреляция. Таким образом, оценка валентного состояния железа на рентгеновском микроанализаторе возможна как по линиям L-серии, так и по линиям К-серии.

Результаты оценки содержаний FeO по рентгеновским спектрам сопоставили с результатами анализа методом мокрой химии и стехиометрических расчетов. Зависимости отношений IK $\beta_{2,5}$ /IK $\beta_{1,3}$ и IL β /IL $\alpha_{1,2}$ от отношения FeO/Fe₂O₃^{общ}, рассчитанного по результатам анализа методом мокрой химии и результатам стехиометрических расчетов, аппроксимировали уравнением линейной регрессии:

FeO/Fe₂O₃^{o6} =
$$a_0 + a_1 * r.$$
 (2)

В таблице 1 приведены коэффициент корреляции R^2 , стандартное отклонение регрессии s_0 для величины FeO/Fe₂O₃^{общ} и относительное стандартное отклонение s_r определения содержания FeO, полученные по данным мокрой химии и стехиометрическим расчетам на рентгеновском микроанализаторе и рентгенофлуоресцентном спектрометре.

Таблица 1

Характер. линии	Спектро- метр	По результатам химического анализа			По результатам стехио- метрических расчетов		
		Sr	s ₀	\mathbf{R}^2	Sr	s ₀	\mathbf{R}^2
IL β /IL $\alpha_{1.2}$	- JXA-8200	6.8	0.04	0.7114	8.4	0.05	0.7712
IK $\beta_{2.5}$ /IK $\beta_{1.3}$		9.7	0.05	0.4828	16.6	0.09	0.3174
IL β /IL $\alpha_{1.2}$	S4 Pioneer	5.3	0.03	0.8022	10.1	0.06	0.7086
IK $\beta_{2.5}$ /IK $\beta_{1.3}$		5.5	0.03	0.7970	7.2	0.04	0.8434

Параметры зависимостей на рентгеновском микроанализаторе и рентгенофлуоресцентном спектрометре

Как видно из таблицы 1, использование результатов анализа методом мокрой обеспечивает лучшую точность по сравнению с результатами стехиометрических расчетов. При определении валентного соотношения железа в пикроильменитах на рентгеновском микроанализаторе следует использовать отношение L β /L $\alpha_{1.2}$ (s_r = 6.8 %). Точности результатов при анализе по L- и K-сериям на рентгенофлуоресцентном спектрометре близки (величина s_r не превышает 5.5 %), поэтому при определении валентного соотношения железа можно использовать как отношение IL β /IL $\alpha_{1.2}$, так и отношение IK $\beta_{2.5}$ /IK $\beta_{1.3}$.

Таблица 2

Результаты анализа образцов пикроильменитов

№	FeO (хим), %	FeO (PMA), %	FeO (ΡΦΑ), %
1	26.54	24.06	24.75
2	21.64	22.14	22.81
3	25.73	24.00	23.68
4	25.94	26.02	26.65
5	21.25	22.35	22.24
6	20.30	22.11	21.16
7	24.47	24.91	23.37
8	23.91	25.51	24.47
9	25.95	24.49	25.55
10	23.30	23.28	24.13

В таблице 2 приведены содержания FeO в образцах пикроильменитов, определенные методом мокрой химии, а также методами РМА и РФА по L-серии спектра при выбранных условиях измерения при калибровке по результатам химического анализа. Максимальное отклонение между результатами РМА и химического анализа составило 2.48 %, между результатами РФА и химического анализа - 2.05 % при содержании FeO в диапазон 20-27 %.

Метод РФА может быть использован для оценки валентного состояния железа в образцах пикро-

ильменитов массой более 0.5 г., он более экспрессный и имеет низкие затраты на пробоподготовку по сравнению с методом мокрой химии. Метод РМА позволяет определять валентное состояние железа в локальной области размером 1–10 мкм с точностью, сопоставимой с методом РФА.

Литература

Гаранин В. К., Кудрявцева Г. П., Сошкина Л. Т. Ильменит из кимберлитов. М.: Изд-во Московского ун-та, 1984. 240 с.

Костровицкий С. И., Алымова Н. В., Яковлев Д. А., Серов В. П., Мацюк С. С., Суворова Л. Ф. Минералогическая паспортизация разных таксонов кимберлитового вулканизма – методическая основа поисковых работ на алмазы // Руды и металлы. 2006. № 4. С. 27–37. Куликова И. М., Баринский Р. Л., Пеков И. В. Метод микрообъемных исследований формы вхождения атомов марганца в кристаллическую структуру минералов // ЗВМО. 1998. Ч. СХХVII. № 3. С. 110–115.

Легкова Г. В., Войткевич В. Г. Шаркин О. П. Электронно-зондовое определение содержания Fe²⁺ и Fe³⁺ в амфиболах // Минерал. журнал. 1982. Т. 4. № 4. С. 90–93.

Таскаев В. И., Стручаева Г. Г., Пятков А. Г. Определение концентрации Fe²⁺ и Fe³⁺ в пироксенах методом рентгеноспектрального микроанализа / Методы рентгеноспектрального анализа. Новосибирск: Наука, 1986. С. 154–158.

Филиппов М. Н., Куприянова Т. А., Лямина О. И. Одновременное определение содержания и формы нахождения элемента в твердом теле рентгенофлуоресцентным методом // ЖАХ. 2001. Т. 56. № 8. С. 817–824.

Чубаров В. М., Финкельштейн А. Л. Рентгенофлуоресцентное определение отношения FeO/Fe₂O₃^{tot} в горных породах // ЖАХ. 2010. Т. 65. № 6. С. 634–641.

Albee A. L., Chodos A. A. Semiquantitative electron microprobe determination of Fe^{2+}/Fe^{3+} and Mn^{2+}/Mn^{3+} in oxides and silicates and its application to petrologic problems // Amer. Miner. 1970. Vol. 55. N 3/4. P. 103–107.

Narbutt K. I. X-ray spectra of iron atoms in minerals // Phys. Chem. Minerals. 1980. Vol. 5. P. 285–295.