РАДИАЦИОННАЯ И ХИМИЧЕСКАЯ УСТОЙЧИВОСТЬ АЛЮМОИТТРИЕВОГО ГРАНАТА

А. А. Лизин¹, А. Н. Лукиных¹, С. В. Томилин¹, Т. С. Лившиц²

¹ – ОАО «ГНЦ НИИ атомных реакторов», г. Димитровград, lukinykh@niiar.ru ² – ИГЕМ РАН, г. Москва, lita_232@yahoo.com

Введение

Природные минералы группы граната, как правило, представляют собой силикаты общей формулы $A_3^{2+} B_2^{3+} Si_3 O_{12}$ (A = Ca, Fe²⁺, Mn, Mg; B = Al, Cr, Fe³⁺) с низким содержанием редкоземельных элементов (РЗЭ) и актинидов. В последнее время стали находить ферритные силикатные гранаты с высоким содержанием РЗЭ [Grew et. al., 2010], а высокие концентрации урана обнаружены также в ферритных гранатах, практически не содержащих кремния [Galuskina et. al., 2010].

Синтетические соединения структурного типа граната ^{VIII} $A_3^{VI}B_2^{IV}X_3O_{12}$ (пр. гр. Ia3d, Z = 8) рассматриваются в качестве потенциальных матриц для иммобилизации радиоактивных отходов [Юдинцев, 2003]. Наличие трех катионных позиций различного размера в каркасной структуре граната создает предпосылки для широкого изоморфизма, что важно при отверждении отходов сложного состава. В позиции ^{VIII} А могут располагаться двух- (Ca, Mn, Mg, Fe, Co, Cd), трех- (Y, P3Э) и четырехвалентные (Ce, An) катионы, имеющие ионные радиусы r = 0.9–1.1 Å. Октаэдрическую позицию ^{VI} в обычно занимают более мелкие трех- (Fe, Al, Ga, Gr, Mn, In, Sc) и четырехвалентные (Zr, Ti, Sn) катионы с ионными радиусами r = 0.5–0.8 Å. Тетраэдрическая позиция X пригодна для вхождения трех (Al, Ga, Fe)-, четырех (Ge, Si)- или пятивалентных (V, As) катионов (r = 0.3–0.5 Å). Изучение внутреннего радиационного воздействия на такие минералоподобные материалы за счет альфа-распада радионуклидов, включенных в кристаллическую решетку, крайне важно для установления условий длительного геологического хранения радиоактивных отходов.

Алюмоиттриевый гранат Y₃Al₂(AlO₄)₃ занимает важное место в ряду синтетических гранатов. Обладая ценными оптическими свойствами, он находит применение в лазерной технике и электронной промышленности, а, кроме того, рассматривается как перспективная матрица для трансмутации младших актинидов, в первую очередь америция [Горский, 2000].

В работе приведены результаты изучения радиационной и химической стойкости алюмоиттриевого граната, допированного короткоживущим изотопом ²⁴⁴Cm (T_{1/2} = 18.1 лет).

Экспериментальная часть

Для получения Cm-содержащего граната использовали оксиды иттрия и алюминия, полученные из исходных нитратов, прокаленных при 400 °C. Препарат кюрия-244 в виде диоксида CmO₂ растворяли в азотной кислоте (3 моль/л). Полученный нитратный раствор кюрия имел следующий изотопный состав: ²⁴⁴Cm – 67.28 %, ²⁴⁰Pu – 8.23 %, ²⁴⁵Cm – 15.18 %, ²⁴⁶Cm – 8.65 %, ²⁴⁷Cm – 0.48 %, ²⁴⁸Cm – 0.18 %. Дочерний изотоп ²⁴⁰Pu был накоплен в течение 3 лет хранения радиоактивного препарата кюрия. Концентрация изотопа кюрий-244 в растворе перед синтезом была уточнена α-спектрометрическим методом и составила 1.39 мг ²⁴⁴Cm/мл. Химический состав полученного граната определяется валовой формулой Y_{2.8853}Cm_{0.1024}Pu_{0.0092}Al₅O₁₂ (массовая доля изотопа ²⁴⁴Cm составила 3 %).

Навески оксидов иттрия и алюминия порционно пропитывали нитратным раствором кюрия и сушили при температуре 100–120 °С, после охлаждения был добавлен избыток водного, 25 % раствора аммиака до нейтрализации раствора и осаждения гидроксидов. Полученный осадок гидроксидов вновь сушился при 120–200 °С с последующей денитрацией (500 °C, 1ч) и кальцинацией (800 °C, 2 ч). Из полученного кальцината прессованием при 200 МПа и 25 °C изготовлены две таблетки, которые затем трехкратно отжигались с промежуточным разрушением после каждого обжига, диспергированием вновь полученных порошков и новым изготовлением таблеток. Термообработка таблеток осуществлялась в течение 4-х часов при: 1450 °C (1-ый и 3-ий отжиг) и 1475 °C (2-ой отжиг).

Фазовый состав и изучение радиационной устойчивости полученной керамики проводили рентгенографически фотометодом (спил радиоактивного порошка с таблетки был запаян в стеклянном капилляре, регистрация в камере Дебая-Шеррера РКУ-114М) и использованием дифрактометра ДРОН-7 (герметизация таблетки с помощью тонкой пленки из тефлона) с использованием порошка алмаза в качестве стандарта. Изучение образца фотометодом проводилось 1 раз в месяц, а на дифрактометре – 1 раз в 3 месяца.

Испытание химической стойкости (как свежеприготовленной, так и аморфизованной в результате самооблучения керамики) проводили с использованием теста MCC-1 [ASTM-test C-1220, 1998]. Исходную бидистиллированную воду анализировали на содержание в ней алюминия. В растворах после выщелачивания концентрации кюрия и плутония определяли α-спектрометрическим методом с погрешностью соответственно 10–12 % и 20 %, алюминия и иттрия – эмиссионно-спектральным методом с погрешностью 20–25 %. Значение pH устанавливали визуально по окрашиванию универсальной индикаторной бумаги.

Результаты

На рентгенограмме свежеприготовленной керамики в интервале углов $2\theta = 20$ – 120 град. хорошо проявлены отражения гранатовой фазы с параметром кристаллической решетки (пкр) 12.0140 (7) Å (рис. 1). Присутствуют также очень слабые рефлексы корунда. Данные фотометода полностью совпадают с результатами исследования образца на дифрактометре. Время наблюдений структурных изменений керамики составило около 18 месяцев. Совершенство кристаллической структуры граната по мере накопления радиационных дефектов ухудшается (рис. 1). На рентгенограмме, полученной через ~200 дней после синтеза образца, в интервале углов 2 $\theta = 20$ –120 град. остается лишь порядка 15 рефлексов граната из примерно 45, наблюдавшихся сразу после син-

теза. Интенсивность главного пика с hkl = 420 за это время уменьшилась в семь раз. Изменение пкр граната удалось проследить до дозы $2.0 \cdot 10^{18} \alpha$ -расп/г. При этом размер гранатовой ячейки увеличился с исходного значения 12.0140(7) Å до 12.20(1) Å. Таким образом, линейное распухание составило 0.186 Å или 1.55 %, а объемное – 4.6 %. Гранатовая фаза становится рентгеноаморфной при накоплении дозы облучения $4.0 \cdot 10^{18} \alpha$ -расп/г (0.3 смещений/атом).

^{1 – 0.05; 2 – 0.8; 3 – 1.58; 4 – 2.46; 5 – 4.0.} G – гранат, Т – тефлон, С – алмаз.

Рис. 1. Изменение дифракционной картины керамики на основе алюмоиттриевого граната по мере накопления повреждающей дозы (в единицах 10¹⁸ α-расп/г):

Таблица 1

Элемент	Период выщелачива- ния, сут	Скорость выщелачивания, г/(м ² ·сут)	
		Сразу после синтеза образца	После аморфизации граната
Cm-244	3	5.6.10-2	1.6.10-1
	7	$3.6 \cdot 10^{-2}$	$1.5 \cdot 10^{-1}$
	14	$3.5 \cdot 10^{-2}$	$3.6 \cdot 10^{-1}$
Al	3	$1.9 \cdot 10^{-2}$	$7.6 \cdot 10^{-3}$
	7	$1.2 \cdot 10^{-2}$	$1.1 \cdot 10^{-2}$
	14	$6.9 \cdot 10^{-3}$	$5.8 \cdot 10^{-3}$
Y	3	$1.2 \cdot 10^{-3}$	$2.7 \cdot 10^{-2}$
	7	$1.6 \cdot 10^{-3}$	$3.4 \cdot 10^{-2}$
	14	$1.3 \cdot 10^{-3}$	$8.1 \cdot 10^{-2}$
Pu-240	3	1.5	4.5
	7	$9.1 \cdot 10^{-1}$	1.9
	14	$5.6 \cdot 10^{-1}$	$9.6 \cdot 10^{-1}$

Значения скоростей выщелачивания элементов из Cm-содержащего образца до и после аморфизации структуры алюмоиттриевого граната

Изучена химическая устойчивость в воде Cm-содержащей керамики до и после аморфизации в ней гранатовой фазы (табл. 1). Значение pH выщелатов находилось в диапазоне 4–4.5, что обусловлено радиолизом воды при интенсивном α-облучении.

Обсуждение результатов

Для завершения реакций фазообразования при синтезе алюминатных гранатов требуются обычно температуры порядка 1600 °С. В нашем случае удалось синтезировать гранат с Cm-244 при 1450–1475 °С с двукратным промежуточным истиранием и компактированием. Полученные керамики получились практически монофазными, причем пкр граната 12.0140 (7) Å, близок к параметру решетки эталонного («чистого») алюмоиттриевого граната (12.00–12.02 Å).

Проведено сравнение химической устойчивости алюминатного граната и изученного ранее ферритного граната состава Ca_{1.5}Gd_{0.908}Cm_{0.092}Th_{0.5}ZrFe₄O₁₂ [Лукиных и др., 2008]. Скорость выщелачивания кюрия из алюмината и феррита с гранатовой структурой, определенная сразу после их синтеза, различна и составляет порядка 10^{-2} г/м² сут для алюминатного и 10^{-3} г/м² сут для ферритного граната. В то же время основные структурообразующие элементы, Al и Y (скорости выхода ~ 10^{-3} г/м² сут), удерживаются лучше, чем Fe и Gd (~ 10^{-2} г/м² сут) в ферритном гранате. Однако, дозы, необходимые для аморфизации ферритного и алюмоиттриевого гранатов, несколько различаются: 0.17 и 0.3 смещ/ат, соответственно.

Заключение

Синтезированы образцы алюмоиттриевого граната с 3 мас. % короткоживущего изотопа ²⁴⁴Cm. Исследована радиационная устойчивость матрицы при взаимодействии с продуктами α -распада кюрия. Полная аморфизация структуры граната наступает через 18 месяцев после синтеза керамики при накоплении дозы облучения $4.0 \cdot 10^{18}$ α -расп/г или 0.3 смещ/ат. Сравнение с данными для ферритного граната, допированного кюрием, показало, что алюмоиттриевый гранат обладает большей устойчивостью к внутреннему облучению.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 08-05-00024-а и проект № 13500 офи_ц).

Литература

Горский В. В. Ядерное топливо с инертной массой (IMF) // Атомная техника за рубежом. 2000. № 10. С. 3–8; № 11. С. 3–11; № 12. С. 3–11.

Лукиных А. Н., Томилин С. В., Лизин А. А. и др. Радиационная и химическая устойчивость синтетической керамики на основе ферритного граната // Радиохимия. 2008. Т. 50, № 5. С. 469–474.

Юдинцев С. В. Структурно-химический подход к выбору кристаллических матриц для иммобилизации актиноидов // Геология рудных месторождений. 2003. Т. 45, № 2. С. 172–187.

American Society for Testing Materials (ASTM). C 1220. 1998. Standart Method for Static Leaching of Monolithic Waste Forms for Disposal of Radioactive Waste. C. 1220–98. West Conshohocken. Pennsylvania.

Galuskina I. O., Galuskin E.V., Armbruster T. et al. Elbrusite-(Zr) – A new uranian garnet from the Upper Chegem caldera, Kabardino-Balkaria, Northern Caucasus, Russia // American Mineralogist. 2010. V. 95; № 8–9. P. 1172–1181.

Grew E. S., Marsh J. H., Yates M. G. et al. Menzerite-(Y), a new species, $\{(Y,REE)(Ca,Fe^{2+})_2\}$ [(Mg,Fe²⁺)(Fe³⁺,Al)](Si₃)O₁₂, from a felsic granulite granulite, Parry Sound, Ontario, and a new garnet end-member $\{Y_2Ca\}[Mg_2](Si_3)O_{12}//$ The Canadian Mineralogist. 2010. V. 48; No 5. P. 1171–1193.