КИНЕТИЧЕСКИЙ АНАЛИЗ ТЕРМОГРАВИМЕТРИЧЕСКИХ ДАННЫХ ИСКОПАЕМЫХ КОСТНЫХ ОСТАТКОВ

Д. В. Киселева¹, С. Л. Вотяков¹, Н. О. Садыкова²

¹ – Институт геологии и геохимии УрО РАН, г. Екатеринбург, Kiseleva@igg.uran.ru ² – Институт экологии растений и животных УрО РАН, г. Екатеринбург, Ninos@ipae.uran.ru

Ключевую роль в определении соотношения органической и неорганической компонент биоминералов играет термический анализ; с его помощью идентифицируются как минеральные, так и органические фазы. Применение современных дериватографов позволяет с высокой точностью определять термогравиметрические характеристики проб миллиграммового веса, что открывает широкие перспективы применения метода в исследованиях фрагментов скелета и отдельных зубов мелких животных. Математическая обработка данных в рамках разработанных методик кинетического анализа [Opfermann, 2000] позволяет выделить отдельные элементарные стадии термоиндуцированных процессов и описать их в виде неких кинетических моделей; данный подход широко используется материаловедении (см. например Ozawa. 20001). в При этом кинетический анализ термогравиметрических данных в исследованиях биоминералов практически не востребован.

Цель работы – кинетический анализ термических данных для ископаемых костных остатков.

Объекты и методы исследования. Ископаемые фрагменты костной ткани диастем водяной полевки (*Arvicola terrestris*) из отложений голоцена в карстовых полостях Урала (местонахождение Навес Старик, горизонт 3, [Смирнов и др., 2009]). Термические данные (кривые ТГ и ДТА) получены на дериватографе Diamond-TG-DTA в интервале 25–800 °C; кинетические расчеты выполнены с использованием программы Netzsch Thermokinetics 3.

Результаты и обсуждение. Корректная обработка и нахождение значений кинетических параметров (наиболее вероятной модели и типа реакции) может быть выполнена, согласно [Opfermann, 1991], при наличие не менее трех термических измерений с различными скоростями нагрева. На рис. 1 представлены термические кривые, полученные при четырех скоростях нагревания (5, 10, 20 и 30 %/мин) для фрагментов весом 17, 12, 18 и 13 мг. Площадь пиков ДТА существенно зависит от скорости нагрева, что, следуя [Opfermann et al., 2000], свидетельствует о том, что протекающие реакции имеют многосталийный конкурирующий (разветвленный) характер. Каждая стадия потери массы и поглощения (выделения) тепла может быть охарактеризована несколькими параметрами: энергией активации E_a, типом процесса (химическая реакция п-го порядка, диффузия, реакция на границе раздела фаз, автокаталитическая реакция, зародышеобразование и др.), предэкспоненциальным множителем (частотным фактором). Основные кинетические параметры рассчитываются по уравнению Аррениуса: $k(T) = A \cdot exp(-E_a/RT)$, где k(T) – скорость реакции (первая производная от степени превращения вещества по времени, моль/с); А – предэкспоненциальный множитель, описывающий число столкновений частиц, с⁻¹; Е_а – энергия активации, Дж/моль; R – универсальная газовая постоянная и T – температура, К. Существует ряд подходов безаприорного кинетического анализа: в методе Озава-Флинн-Уолла для анализа берется набор точек с одинаковой степенью превращения x (отношением заданной площади пика к полной на кривой ДТА), и на графике Аррениуса (логарифм скорости нагрева от обратной температуры максимума) получается серия из нескольких прямых, каждая характеризующаяся своей энергией активации. В анализе по Фридману для построения набора прямых с

Рис. 1. Кривые ДТА (а) и ТГ (б), полученные при разных скоростях нагревания 5, 10, 20 и 30 С/мин (1–4) для четырех сходных челюстных фрагментов водяной полевки.

Рис. 2. Графические результаты анализа по Фридману (а) и Озава-Флинн-Уоллу (б) для образцов при разных скоростях нагревания 5, 10, 20 и 30 %/мин (1–4). На графики нанесены линии равной степени превращения x (x = 0.02; 0.05; 0.2; 0.5; 0.8; 0.95; 0.98 %). α – угол наклона линий равной степени превращения, β – угол наклона экспериментальных кривых.

одинаковой степенью превращения используется модифицированный график в координатах логарифм скорости реакции – обратная температура. Каждая группа параллельных прямых соответствует одной стадии с постоянным значением энергии активации. Графические результаты анализа экспериментальных данных, полученных для фрагментов костной ткани, по Фридману и Озава-Флинн-Уоллу приведены на рис. 2. Видно, что на графике Фридмана наклон экспериментальных кривых в начале реакции (при 0.02 < x < 0.1) меньше, чем наклон линий равной степени превращения; это указывает на первоначальную реакцию одно-, двух- или трехмерной диффузии.

описании При многостадийных процессов для нескольких одновременно протекающих параллельных или независимых элементарных стадий методы безпариорного кинетического анализа не могут дать точное значение для каждой из стадий, а только одно (промежуточное) значение для каждой степени превращения. Анализ, основанный на кинетической модели, использует моделирование кривой ТГ методами многомерной линейной и нелинейной регрессии при заданном наборе известных кинетических параметров: типа реакции, ее порядка, энергии активации, предэкспонециального множителя [Opfermann, 2000]. Если смоделированная И экспериментальная кривые совпадают, это означает, что заданные параметры с определенной вероятностью соответствуют реальным. Для описания многостадийных процессов представляется корректным использовать метод нелинейной регрессии. Для

упрощения расчетов предположено, что исходные вещества разлагаются независимо друг от друга и стадии реакции разложения независимы (если в действительности это не так, найденную кинетическую модель впоследствии можно откорректировать). После предварительных расчетов была выбрана модель с шестью независимыми стадиями (по выделяющихся на кривых ДТА пиков): первая стадия соответствует числу эндотермическому пику и потере массы до 200 °С, обусловленному выделением адсорбированной воды и (или) процессом денатурации костного коллагена; вторая, третья, четвертая и пятая – сложному экзотермическому пику при 200-600 °C, обусловленному последовательным разложением высокои низкомолекулярных органических веществ коллагена, а также началом выхода карбонат-ионов из структуры гидроксиапатита кости; последняя, шестая стадия соответствует экзотермическому пику около 700 °С, возникающему из-за продолжения разложения гидроксиапатита с выделением CO₂ и других летучих компонентов (F, Cl и др.). Результаты расчетов с использованием модели с шестью независимыми стадиями приведены на рис. 3 и в табл.

Рис. 3. Результаты моделирования кривых ТГ костной ткани методом нелинейной регрессии с использованием модели с шестью независимыми стадиями. Точки – экспериментальные данные, сплошные линии – модель. Кривые 1–4 получены при скоростях нагревания 5, 10, 20 и 30 °С/мин.

Таблица

Стадия	Энергия активации Е _а , кДж/моль	Предэкспоненциальный множитель LgA, c ⁻¹	Порядок реакции n
1	15.70	-1.66	17.69
2	19.44	-0.02	0.98
3	110.33	6.21	2.77
4	13.69	-2.20	13.25
5	112.14	6.65	1.65
6	110.93	5.99	2.84

Рассчитанные величины кинетических параметров термического разложения костной ткани в модели кинетической реакции n-ного порядка F_n

Примечание. *Коэффициент корреляции для метода наименьших квадратов 0.999760.

Заключение. Современные термические исследования биоминералов сводятся, как правило, к фиксации стадий разложения, численной оценке потерь масс и тепловых потоков в пробах. При этом термические кривые содержат также информацию о типе и о количественных характеристиках происходящих при отжиге реакций – их стадийности, энергии активации и др. Представляется, что перспективы использования термических данных в биоминералогии лежат именно в плане развития их кинетического анализа.

Работа выполнена в рамках программ Президиума РАН № 23 «Научные основы инновационных энергоресурсосберегающих экологически безопасных технологий оценки и освоения природных и техногенных ресурсов», № 20 «Создание и совершенствование методов химического анализа и исследования структуры веществ и материалов», гранта РФФИ №10-05-00355-а.

Литература

Смирнов Н. Г., Вотяков С. Л., Садыкова Н. О., Киселева Д. В., Щапова Ю. В. Физикохимические характеристики ископаемых костных остатков млекопитающих и проблема оценки их относительного возраста. Часть 1. Термический и масс-спектрометрический элементный анализ. Екатеринбург: «Гощицкий», 2009. 118 с.

Opfermann J. Kinetic analysis using multivariate non-linear regression // Journal of Thermal Analysis and Calorimetry. 2000. V. 60. P. 641–658.

Opfermann J., Wilke G., Ludwig W., Kaisersberger E., Gebhardt M., Hagen S. in Thermische Analyseverfahren in Industrie und Forschung (VI Herbstschule) Ed. H. J. Flammershein (Jena: Friedrich – Schiller – Universitat). 1991. P. 51–79.

Ozawa T. Thermal analysis - review and prospect // Thermochimica Acta. 2000. V. 355. P. 35-42.