ИНФРАКРАСНАЯ СПЕКТРОСКОПИЯ МИНЕРАЛА ХАНТИТА И ЕГО АНАЛОГОВ – РЕДКОЗЕМЕЛЬНЫХ ХРОМОВЫХ БОРАТОВ

Е. А. Добрецова, Е. Ю. Боровикова, В. В. Мальцев

Московский государственный университет, Геологический факультет, г. Москва, amurr@mail.ru

Хантит образуется в низкотемпературных поверхностных или приповерхностных условиях либо прямым осаждением насыщенных магнием водных растворов, либо в результате изменения ранее образованных карбонатов под действием подобных растворов [Dollase, 1986] Хантит кристаллизуется в пространственной группе R32 с одной формульной единицей в элементарной ячейке. В структуре существует 3 типа координационных полиэдров: тригональные призы CaO₆, октаэдры MgO₆ и два типа треугольных CO₃ групп. Атомы углерода первого типа расположены на осях 3-его порядка, группа CO3 (1) имеют позиционную симметрия D₃. Остающиеся три кристаллографически эквивалентных группы CO₃ (2) расположены вокруг оси 3 и обладают позиционной симмерией C₂.

На рисунке 1 представлен ИК-спектр хантита [Downs, 2006]. В таблице 1 приведен фактор-групповой анализ внутренних колебаний СО₃ ионов в структуре хантита.

Таблица 1

Тип колебаний	Точечная симмерия иона CO ₃ D _{3h}	Позиционная симметрия иона CO ₃	Фактор- группа кристалла	Позиционная симметрия иона СО ₃	Фактор группа кристалла <i>D</i> 3
		D_3	D_3	C_2	
ν_1	A_1 '	A_1	A_1 (KP)	A	А ₁ (КР) + Е (КР, ИК)
v ₂	A_2 "	A_2	A ₂ (ИК)	В	А ₂ (ИК) + Е (КР, ИК)
v ₃ , v ₄	E'	E	<i>Е</i> (КР, ИК)	A + B	$A_1 (KP) + A_2$ (ИК) + 2E (KP, ИК)

Внутренние колебания ионов СО3 хантита

Примечание: КР – колебания, активные в спектре комбинационного рассеяния, ИК – колебания, активные в инфракрасном спектре.

Полосы в области 1545–1435 см⁻¹ относятся к валентным асимметричным v_3 колебаниям ионов CO₃ в двух кристаллографических позициях. Полоса 1115 см⁻¹ соответствует валентным симметричным v_1 колебаниям. Полосы в области 890–850 см⁻¹ отвечают деформационным симметричным v_2 колебаниям, и полоса 744 см⁻¹ – деформационным симметричным колебаниям.

Бораты редкоземельных элементов RCr3(BO3)4, где R – Y или La – Lu, имеют ацентричную структуру природного карбоната хантита CaMg₃(CO₃)₃ (пр. гр. R32), в которой в изолированных тригональных призмах вместо Са находятся р.з.э. или Y, в октаэдрических позициях магния – Cr, а изолированные треугольники CO₃ заменены BO₃ группами [Dollase, 1986]. Интерес к ним вызван комбинацией их функциональных характеристик – нелинейно-оптических, лазерных, активно-нелинейных и др. – в сочетании с высокой термической, химической и механической устойчивостью и уникальной теплопроводностью [Леонюк, 2008]. Кроме того, они интересны своими ферроэлектрическими частности, уникальными магнитными И свойствами, В сосуществованием ферроэлектрического и ферромагнитного упорядочений.

Рис. 1. ИК-спектр хантита.

Помимо ромбоэдрической модификации существует высокотемпературная симметрией моноклинная с C2/c, структурно которая изучена $NdAl_3(BO_3)_4$ для [Белоконева, 1988]. Соединения с ромбоэдрической структурой образуются при пониженных температурах (~880–900 ℃), в более высокотемпературной области, вплоть до 1040-1050? кристаллизуются фазы с симметрией С2/с.

Лве

модификации боратов имеют политипную природу, в каждой из них можно выделить два различных типа слоев одинаковых для обеих разновидностей. В ромбоэдрическом политипе один тип слоев размножен вокруг другого осями 2, а в моноклинном – центрами инверсии. [Белоконева, 1983]. Близость строения двух политипов вызывает трудности разделения их методами порошковой рентгенографии. Метод ИК-спектроскопии, чувствительный к ближнему порядку расположения атомов позволяет отнести бораты к конкретной пространственной группе, а также установить присутствие слоев одного политипа в структуре другого.

Фактор-групповой анализ колебаний треугольных ионов в структуре хантита (табл. 1) справедлив также для ромбоэдрических политипов редкоземельных боратов. В боратах с пр. гр. С2/с также имеется две, но обе позиции общего положения для атомов В, соответственно с позиционной симметрией C_1 (1). В таблице 2 показано, как преобразуются колебания ВО3 при переходе от позиционной группы симметрии к факторгруппе пр.гр. кристалла *C*_{2*h*}.

Таблица 2

Тип колебаний	Точечная симмерия иона ВО ₃ D _{3h}	Позиционная симметрия иона ВО ₃ <i>С</i> 1	Фактор-группа кристалла C _{2h}
ν_1	A_1 '	A	$A_g(\mathrm{KP}) + B_g(\mathrm{KP}) + A_u(\mathrm{HK}) + B_u(\mathrm{HK})$
v ₂	A_2 "	Α	$A_g(\mathrm{KP}) + B_g(\mathrm{KP}) + A_u(\mathrm{HK}) + B_u(\mathrm{HK})$
v ₃ , v ₄	E'	2 <i>A</i>	$\frac{2A_g(\text{KP}) + 2B_g(\text{KP}) +}{2A_u(\text{MK}) + 2B_u(\text{MK})}$

Внутренние колебания ионов ВО3 моноклинной модификации С2/с боратов RCr₃(BO₃)₄, где R – У или La – Lu

Как следует из таблицы 1 в ИК-спектрах боратов с пр. гр. R32 правилами отбора разрешены 1 полоса v₁, три полосы v₂, и по 4 полосы v₃ и v₄ колебаний ВО₃ ионов. В ИКспектрах боратов с пространственной группой С2/с могут проявляться следующий колебания: по 4 полосы v1 и v2, и по 8 полос v3 и v4 колебаний BO3 ионов. (табл. 2) На рисунке 2 представлены спектры ромбоэдрического (рис. 2.1) и моноклинного (рис. 2.2) боратов. В спектре GdCr₃(BO₃)₄ (рис. 2.1) в области 1360–1100 см⁻¹ проявляется 4 полосы v₃ колебаний в соответствии с правилами отбора для пр. гр. R32. В области 780-650 см⁻¹ проявляются деформационные колебания v_2 и v_4 . Ниже 500 см⁻¹ в спектре наблю-

Рис. 2. ИК-спектры редкоземельных хромовых боратов: $1 - GdCr_3(BO_3)_4$ (R32), $2 - NdCr_3(BO_3)_4$ (C2/c).

даются трансляционные колебания Cr. В ИК-спектре NdCr₃(BO₃)₄ (рис. 2.2) в области v₃ колебаний наблюдается 7 из разрешенных 8 полос для моноклинной модификации. Слабые полосы 1040–970 см⁻¹ относятся к v₁ колебаниям. В области деформационных колебаний появляется характерный дублет полос 620 и 598 см⁻¹. По характеру ИК-спектров было выявлено, что бораты с крупными катионами La – Nd кристаллизуются исключительно в моноклинной модификации. Бораты с редкоземельными катионами средних размеров от Sm до Er при температурах кристаллизации 880–900 °C и отношении шихты к растворителю 1:1 образуют фазы с пр. гр. R32, а при температурах ~ 1040–1050 °C и отношении шихты к растворителю 2,3: 1 – фазы с пр. гр. C2/с. В промежуточном интервале температур бораты с этими редкоземельными катионами образуют ромбоэдрические фазы, в структуру которых встроены слои упорядоченные по моноклинному закону.

Литература

Белоконева Е. Л., Леонюк Н. И., Пашкова А. В., Тимченко Т. И. Новые модификации редкоземельных алюминиевых боратов // Кристаллография. 1988 Т. 33. № 5. С. 1287.

Белоконева Е. Л., Тимченко Т. И. Политипные соотношения в струкурах боратов с общей формулой RaAl₃(BO₃)₄, R = Y, Nd, Gd // Кристаллография. 1983. Т. 28. Вып. 6. С. 1118–1123.

Леонюк Н. И. Выращивание новых оптических кристаллов из боросодержащих раствороврасплавов // Кристаллография. 2008. Т. 53. № 3. С. 546–554.

Dollase W. A., Reeder R. J. Crystal structure refinement of huntite, CaMg₃(CO₃)₄, with X-ray powder data // Am. Miner. 1986. V. 71. P. 163–166.

Downs R. T. (2006) The RRUFF Project: an integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals. Program and Abstracts of the 19th General Meeting of the International Mineralogical Association in Kobe, Japan. O03-13 (http://rruff.info/).