КОЛЕБАТЕЛЬНАЯ СПЕКТРОСКОПИЯ МИНЕРАЛА КОЗНАРИТА И ЕГО РЕДКОЗЕМЕЛЬНЫХ АНАЛОГОВ

Е. Ю. Боровикова¹, Д. М. Быков²

¹ – Московский государственный университет им. М. В. Ломоносова, г. Москва, amurr@mail.ru

² – Нижегородский государственный университет им. Н. И. Лобачевского, г. Нижний Новгород, denis.bykov@inbox.ru

Среди природных минералов известны всего три циркониевых фосфата с щелочноземельным катионом: кознарит, гайнесит и Cs аналог последнего. Кознарит KZr₂(PO₄)₃ – продукт поздней стадии гидротермальных изменений гранитных пегматитов. На данный момент известно всего три проявления кознарита в мире. [Brownfield, 1993]. В то же самое время, синтетический натриевый аналог этого минерала NaZ₂(PO₄)₃ (насикон, NZP) хорошо известен благодаря тому, что соединения, кристаллизующиеся в данном структурном типе обладают широким спектром функциональных характеристик: устойчивостью, химической радиационной термической, И малым тепловым расширением, низкой теплопроводностью, хорошей ионной проводимостью и т.д., а также могут быть использованы для отверждения ядерных отходов разных составов и Данное исследование посвящено изучению процессов сложности. катионного упорядочения в структурах природного минерала и его редкоземельных аналогов с общей формулой $M^{II}_{0.33}T_2(PO_4)_3$, где $M^{III} - Y$, La – Lu; T – Zr, Hf с помощью методов колебательной спектроскопии. Также был изучен ряд твердых растворов La_{0.33}Zr₂(PO₄)₃ – $Yb_{0,33}Zr_2(PO_4)_3$.

ИК-спектры были получены на вакуумном спектрометре IFS125HR (Брукер), спектры комбинационного рассеяния – на Фурье-спектрометре Vertex 70? снабженном модулем RAMII FT с Ge детектором (Брукер).

Структура кознарита и насикона (пространственная группа R3c, Z = 6) [Brownfield et al., 1993; Hong, 1972] представляет собой каркас объединенных общими вершинами октаэдров ZrO₆ и тетраэдров PO₄. Основу смешенного каркаса составляет фрагмент [Zr₂(PO₄)₃]⁻, образованный двумя октаэдрами ZrO₆, связанными тремя мостиковыми тетраэдрами PO₄. Эти структурообразующие фрагменты формируют колонки, вытянутые вдоль оси $\overline{3}$. Между октаэдрами Zr в колонках располагаются позиции M1 (6*b*), обладающие искаженной октаэдрической координацией. Они полностью заняты атомами щелочных элементов (рис. 1а).

Рис. 1. Характер упорядочения щелочных и редкоземельных катионов в стуктурах: а – кознарита ($R\overline{3}c$), $\delta - M^{III}_{0,33}Zr_2(PO_4)_3$, где $M^{III} = Y$, Ce-Lu ($P\overline{3}c1$), в – La_{0,33}Zr₂(PO₄)₃ ($P\overline{3}$).

а кзе о гзет в гз Уточнение структур редкоземельных фаз $M^{II}_{0.33}$ Zr₂(PO₄)₃ (M^{III} = Ce,Eu,Yb) методом Ритвельда привело к

пространственной группе этих соединений $P\overline{3}c$ [Bykov et al., 2006]. Атомы лантаноидов упорядочиваются в позициях 2*b* (0 0 0), R-трансляция исчезает (рис. 1, б).

Структура La_{0,33}Zr₂(PO₄)₃ была решена в пространственной группе $P\overline{3}$ [Barre et al., 2005]. Атомы La полностью занимают позиции 1*a* (000), 0.82 позиций 1*b* (001/2), остающиеся 0.18 атомов La частично занимают 2*d* позиции (1/3 2/3 0.667) (рис. 1, в).

Фактор-групповой анализ внутренних колебаний РО³⁻иона приведен в таблице 1. В

структурах кознарита и насикона (пр. гр. $R\bar{3}c$, фактор-группа D_{3d}) атомы фосфора занимают позицию на оси второго порядка (позиционная симметрия C_2). В структуре циркониевых фосфатов с редкими землями с пр.гр. $P\bar{3}c1$ (фактор-группа также D_{3d}) атомы фосфора занимают две позиции с различной симметрией. Часть атомов фосфора, так же как в предыдущем случае, занимает позиции с симметрией C_2 . Таким образом, для внутренних колебаний этих ионов фактор-групповой анализ будет таким же, как и для кознарита с пр. гр. $R\bar{3}c$. Другая часть атомов фосфора находится в общем положении (симметрия C_1). В структуре La_{0.33}Zr₂(PO₄)₃ (пр. гр. $P\bar{3}$, фактор-группа C_{3i}) атомы фосфора занимают 3 позиции с симметрией C_1 (1). Все колебания, разрешенные правилами отбора, приведенные в таблице 1, утраиваются.

Таблица 1

Колебания РО ₄ ³⁻	Точечная группа симметрии <i>T_d</i>	Позиционная симметрия C ₁	Фактор-группа C_{3i}
ν_1	A_1	Α	$A_g + E_g + A_u + E_u$
v_2	E	2A	$2A_g + 2E_g + 2A_u + 2E_u$
ν_3, ν_4	F_2	3A	$3A_{g} + 3E_{g} + 3A_{u} + 3E_{u}$
	Точечная группа симметрии <i>T_d</i>	Позиционная симметрия C ₁	Фактор-группа D _{3d}
ν_1	A_1	Α	$\boldsymbol{A_{1g}} + \boldsymbol{A_{2g}} + 2\boldsymbol{E_g} + \boldsymbol{A_{1u}} + \boldsymbol{A_{2u}} + 2\boldsymbol{E_u}$
ν_2	E	2A	$2\boldsymbol{A}_{1g} + 2\boldsymbol{A}_{2g} + 4\boldsymbol{E}_g + 2\boldsymbol{A}_{1u} + 2\boldsymbol{A}_{2u} + 4\boldsymbol{E}_u$
ν_3, ν_4	F_2	3A	$3A_{1g} + 3A_{2g} + 6E_g + 3A_{1u} + 3A_{2u} + 6E_u$
	Точечная группа симметрии <i>T_d</i>	Позиционная симметрия C ₂	Φ актор-группа D_{3d}
ν_1	A_1	Α	$A_{1g} + E_g + A_{1u} + E_u$
v ₂	E	2A	$2\boldsymbol{A_{1g}} + 2\boldsymbol{E_g} + 2\boldsymbol{A_{1u}} + 2\boldsymbol{E_u}$
ν_3, ν_4	F_2	A + 2B	$A_{1g} + 2A_{2g} + 3E_g + A_{1u} + 2A_{2u} + 3E_u$

Фактор-групповой анализ внутренних колебаний тетраэдрических ионов PO₄³⁻ в структурах различных циркониевых фосфатов

Примечание: в таблице жирным шрифтом показаны активные колебания.

Также нами проведен анализ внешних колебаний, включающий трансляции катионов, PO_4^{3-} ионов и вращения PO_4^{3-} ионов. Сравнение спектров Zr и Hf образцов соответствующих составов позволило выявить полосы проявляющие масс-эффект, т.е. отвечающие колебаниям M^{IV} катионов в области 350–270 см⁻¹.

На рис. 2 приведены ИК-спектры кознарита (2.1) и циркониевых фосфатов празеодима (2.2) и лантана (2.3). Из 5 разрешенных правилами отбора полос v_3 колебаний в спектре кознарита реализуется две полосы с максимумами 1070 и 1030 см⁻¹ и высокочастотная слабая полоса ~ 1190 см⁻¹ (рис. 2.1). Плечо 970 см⁻¹ отвечает v_1 колебанию, четыре полосы в области 640–540 см⁻¹ – v_4 колебаниям.

Рис. 2. Инфракрасные спектры: 1 – кознарита $KZ_2(PO_4)_3$, 2 – $Pr_{0,33}Zr_2(PO_4)_3$, 3 – $La_{0.33}Zr_2(PO_4)_3$.

Рис. 3. Спектры комбинационного рассеяния: 1 – La_{0.33}Zr₂(PO₄)₃, 2 – Ce_{0.33}Zr₂(PO₄)₃.

При двух независимых позициях фосфора в спектрах редкоземельных фосфатов с пр.гр. $P \ \overline{3}c1$ число полос валентных асимметричных (v₃) колебаний должно возрасти до 14, а валентных симметричных колебаний (v₁) до 3. В ИК-спектрах проявляется восемь полос v₃ колебаний в области 1280–1020 см⁻¹ и две-три полосы v₁ колебаний ~980, 935–920 см⁻¹.

В спектрах комбинационного рассеяния при переходе $R3c \rightarrow P3c1$ также наблюдается значительное усложнение спектра, подтверждаемое фактор-групповым анализом.

Несмотря на схожесть спектров фаз $M_{0.33}^{III}$ Zr₂(PO₄)₃ где $M^{III} =$ Ce–Yb (пр. гр. $P\bar{3}c1$) и La_{0.33}Zr₂(PO₄)₃ (sp.gr. $P\bar{3}$), они имеют некоторые отличия, которые особенно хорошо проявляются в KP спектрах в областях валентных и симметричных деформационных v₂ колебаний (рис. 3). Как ИК, так и KP-спектры La фазы отличаются гораздо меньшей четкостью полос по сравнению со спектрами остальных редкоземельных фосфатов.

Исследование твердых растворов в системе La_{0.33}Zr₂(PO₄)₃–Yb_{0.33}Zr₂(PO₄)₃ показало, что большая часть их кристаллизуется в пространственной группе $P\overline{3}$, характерной для конечного лантанового члена этой серии. Морфотропный переход $P\overline{3} \rightarrow P\overline{3}c$ происходит вблизи состава La_{1/18}Yb_{5/18}Zr₂(PO₄)₃. В настоящее время проводится изучение ионной проводимости в фосфатах этой серии. Можно ожидать, что максимальное значение ионной проводимости будет наблюдаться вблизи состава La_{1/18}Yb_{5/18}Zr₂(PO₄)₃, точки морфотропного перехода.

Barre M., Crosnier-Lopez M. P., Le Berre F., et al. La^{3+} Diffusion in the NASICON-Type Compound $La_{1/3}Zr_2(PO_4)_3$: X-ray Thermodiffraction, ³¹P NMR, and Ionic Conductivity Investigations // Chem. Mater. 2005. V. 17. P. 6605.

Brownfield M. E., Foord E. E., Sutley S. J., Botinelly T. Kosnarite, KZr₂(PO₄)₃, a new mineral from Mount Mica and Black Mountain, Oxford County, Maine // Am. Mineral. 1993. V. 78. P. 653–656.

Bykov D. M., Gobechiya E. R., Kabalov Yu. K. et al. Crystal structures of lanthanide and zirconium phosphates with general formula $Ln_{0.33}Zr_2(PO_4)_3$, where Ln = Ce, Eu, Yb. Solid State Chem. 2006. V. 179. P. 3101.

Hong H. Y.-P. Crystal structure and crystal chemistry in the system $Na_{1+x}Zr_2Si_xP_{3-x}O_{12}$ // Mater. Res. Bull. 1972. V. 11. P.173