РЕНТГЕНОГРАФИЧЕСКИЙ АНАЛИЗ КИЗЕЛЬГУРА

О. М. Ильичёва, В. В. Власов

ФГУП «ЦНИИгеолнеруд», г. Казань, atsic@geolnerud.net

Кизельгур получается из диатомита пережиганием при температуре от 800 °С до 1000 °С в виде серовато-белого порошка, который состоит преимущественно из диоксида кремния (кремнезёма) и может содержать 60 и более процентов кристобалита. Кизельгур обладает большой пористостью, способностью к адсорбции, низкой теплои звукопроводностью, тугоплавкостью и кислотостойкостью. Способность кизельгура легко растворяться в щелочах используется для производства жидких стекол, представляющих собой растворимые силикаты. В смеси с глиной кизельгур используют для получения легковесных керамических изделий [Дистанов, 1976].

Кремнезем в кизельгуре представлен сочетанием нескольких полиморфных модификаций. Рентгеновские методы исследования позволяют выявить различные полиморфные модификации кремнезема и определить их количественное соотношение. Однако использование рентгенографического метода для исследования природных образцов с наличием кремнистой фазы опал-кристобалит-тридимит в ряде случаев бывает затруднительным из-за наложения основных рефлексов составляющих. Разрешить такие затруднения можно применением метода полнопрофильного анализа (метод Ритвелда). Этот метод позволяет уточнять и структурные особенности фаз. Достоверные результаты профильного метода обусловлены в первую очередь тем, что расчет и уточнение производится для каждой точки профиля рентгенограммы одновременно и любые изменения параметров автоматически сказываются на всем профиле дифракционной картины. Для точного описания дифракционной картины существует ряд профильных функций, правильный выбор которых улучшает качество аппроксимации [Пущаровский, 2000]. В настоящее время метод Ритвелда получил широкое распространение ввиду бурного развития информационных технологий и разработки нового программного обеспечения.

В данной работе представлены результаты расчета соотношений опалкристобалит и кристобалит-тридимит по рентгенографическим данным исследования порошков кизельгура. Для построения дифрактограмм и уточнения структурных характеристик были использованы специальные программы: PowderCell (PCW) – для интуитивной генерации начальных моделей структур и TOPAS – для уточнения структуры и количественного анализа минеральных фаз по дифракционной картине.

Исходные дифрактограммы образцов, представленые на рисунке 1, были получены на порошковом дифрактометре D8 Advance в стандартном режиме с использованием монохроматизированного медного излучения. Исследуемые образцы кизельгура представляют собой смесь полиморфных модификаций кремнезема – разупорядоченного опала, кристаллических кристобалита и тридимита.

Принято считать, что в структурном плане опал подобен кристобалиту, атомы которого заселены в соответствии с пространственной группой P4₁2₁2 [Дэна, 1966]. Четыре атома кремния в такой структуре занимают позиции при u = 0.3: (u,u,0); (-u, -u, 0.5); (0.5-u, 0.5+u, 0,25); ($\frac{1}{2}$ +u, $\frac{1}{2}$ -u, 0,75). Восемь атомов кислорода занимают (x, y, z); (x, y, -z); (-x, -y-, 0.5-z); (-x, -y-, z+0.5); (x+0.5, 0.5-y, z+0.25); (0.5-x, y+0.5, z+0.75); (0.5x, y+0.5, 0.25-z); (x+0.5, 0.5-y, 0.75-z) при хуг соответственно равных 0.245, 0.10, 0.175. Но опал характеризуется более разупорядоченной структурой.

Мы описали профиль рентгенограммы образца № 1 двумя расчетными кривыми фаз кремнезема с одинаковой пространственной группой и заселенностью атомов. Разница была лишь в задаваемых и уточняемых структурных параметрах. В качестве профильной была использована функция псевдо-Войгта (PV). Результат такой аппроксимации представлен на рисунке 2 и в таблице 1.

Рис. 1. Обзорные дифрактограммы двух образцов кизельгура (Си-Кα излучение): вверху – образец № 1, внизу – образец № 2.

Рис. 2. Описание дифракционного спектра образца кизельгура № 1.

Таблица 1

№ об- разца	Фазовый состав	Исходные параметры						Параметры после уточнения					
		a, Å	b, Å	c, Å	U	v	W	a, Å	b, Å	c, Å	U	V	W
1	опал	4.97	4.97	6.80	0.00	0.00	0.05	5.91	5.91	5.82	-0.50	0.86	-0.20
	кристоба- лит	4.97	4.97	6.97	0.00	0.00	0.05	4.97	4.97	6.95	0.02	0.10	0.10
2	кристоба- лит	4.97	4.97	6.97	0.00	0.00	0.05	4.97	4.97	6.95	0.02	0.10	0.10
	тридимит	18.49	4.99	25.83	0.00	0.00	0.05	18.94	4.96	23.36	0.00	0.50	1.00

Рентгеноструктурные параметры образцов кизельгура

Фазовый состав второго образца резко отличается и сложен хорошо раскристаллизованным α-кристобалитом с примесью α-тридимита. Для расчета была выбрана структура кристобалита, аналогичная той, что мы использовали для описания в предыдущем примере. Заселенность атомов тридимита была задана согласно пространственной группе Сс. Так же, как и в первом случае, для описания дифрактограммы применялась профильная функция PV. Структурные параметры уточнялись в ходе расчета.

Рис. 3. Описание дифракционного спектра образца кизельгура № 2.

Сопоставление исходной рентгенограммы кизельгура № 2 с математической моделью приведено на рисунке 3 и в таблице 1.

Разное количественное соотношение полиморфных модификаций в кизельгуре влияет на технологические свойства и, соответственно, определяет область применения.

В результате проведенных исследований был определен фазовый состав представленных образцов и получены количественные фазовые соотношения, а также были уточнены структурные характеристики слагающих образцы минеральных фаз.

Литература

Дистанов У. Г. Кремнистые породы СССР / У. Г. Дистанов. Казань: Татарское кн. изд-во, 1976. 412 с.

Дэна Дж. Система минералогии. Т II. Минералы кремнезема / Дж. Дэна, Э. С. Дэна, К. Фрондель. М.: Мир, 1966. 430 с.

Пущаровский Д. Ю. Рентгенография минералов. М.: ЗАО «Геоинфоммарк», 2000.