СРАВНЕНИЕ ХАЛЬКОГЕНИДНЫХ СИСТЕМ Аg–Au–X (X = S, Se, Te) НА ОСНОВАНИИ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ, ПОЛУЧЕННЫХ МЕТОДОМ ЭДС В ДИАПАЗОНЕ ТЕМПЕРАТУР 298 К–620 К ПРИ ДАВЛЕНИИ 1 АТМ

Е. А. Ечмаева, Е. Г. Осадчий

Институт Экспериментальной Минералогии РАН, г. Черноголовка, echmaeva@iem.ac.ru

Соединения трехкомпонентных Ag–Au–X и бинарных Ag–X и Au–X (X = S, Se, Te) халькогенидных систем характерны для гидротермальных месторождений серебра и золота.

И, хотя сера, теллур и селен имеют химическое сходство и склонность к изоморфному замещению друг друга в минералах, их поведение в образовании руд различно. Для выяснения физико-химических параметров образования минералов и важности их роли в процессах эпитермального рудообразования, а также условий миграции серебра и золота в гидротермальных процессах важно знать термодинамические свойства и фазовые отношения соединений – халькогенидов серебра и золота указанных систем, с помощью которых, в дальнейшем, появится возможность перейти к более сложным составам и твердым растворам.

Метод измерения электродвижущих сил (ЭДС) является единственным прямым способом определения энергии Гиббса фазовой реакции. В твердотельных гальванических ячейках, содержащих твердый серебропроводящий электролит Ag₄RbI₅ или AgI были изучены реакции образования тройных и бинарных халькогенидов из элементов и соединений и рассчитаны стандартные термодинамические функции образования минералов ютенбогаардтит (Ag₃AuS₂), петровскаит (AgAuS), Au₂S [Osadchii, Rappo, 2004], науманнит (Ag₂Se), фишессерит (Ag₃AuS₂), AuSe [Osadchii, Echmaeva, 2007], штютцит (Ag₅Te₃), гессит (Ag₂Te), петцит (Ag₃AuS₂), калаверит (AuTe₂). На основании полученных термодинамических данных построены фазовые диаграммы тройных систем (298 K–620 K, 1 атм.) и проведен сравнительный анализ полей термодинамической устойчивости минералов и фаз систем Ag–Au–X (X = S, Se, Te) в координатах $\mu(X_i)$ -T и $\mu(X_i)$ -

По виду фазовых диаграмм, построенных на основании экспериментально полученных термодинамических данных, выявлены основные черты сходства и различия тройных халькогенидных систем Ag–Au–X (X = S, Se, Te). Вид диаграммы системы Ag–Au–Te наиболее сложный, поскольку, кроме твердого раствора электрума, включает в себя ряд креннеритовых твердых растворов и содержит на стороне Ag–Te помимо соединения состава Ag₂X (как в системах с S или Se) также соединение состава Ag₅Te₃ и высокотемпературную (выше 393 K) фазу Ag_{1.9}Te. Кроме того, фазовые отношения в теллуридной системе меняются при температуре около 393 K, согласно рисунку 3: ниже 393 K устойчива ассоциация гессит-петцит, а выше 393 K – ассоциация штютцит-петцит.

Топологически во всех сравниваемых системах минералы и фазы могут находиться в равновесии как с элементарным золотом, так и с электрумом любого заданного состава. Для сокращения вспомогательных данных в настоящей работе в реакциях использовалось только чистое золото. Во всех системах присутствует тройное соединение состава Ag₃AuX₂, представленное минералами ютенбогаардтит, фишессерит и петцит, что является главной объединяющей чертой трехкомпонентных систем.

Для определения полей термодинамической стабильности изученных бинарных и тройных халькогенидов серебра и золота в зависимости от температуры и фугитивности

Рис. 1. Фазовые отношения в системе Ад-Au-S при 298–386 К (Osadchii, Rappo, 2004). Жирной линией обозначен твердый раствор электрума.

Рис. 2. Фазовые отношения в системе Ад-Au–Se при 298–403 К (Osadchii, Echmaeva, 2007). Жирной линией обозначен твердый раствор электрума.

Рис. 3. Фазовые отношения в системе Ag–Au–Te при температурах ниже 393 K и выше 393K (со сменой фазовых отношений). Диаграмма построена с использованием данных Markham N. L. (1960), Honea R. M. (1964), Cabri L. J. (1965). Жирными линиями показаны твердые растворы электрума и креннерита.

газообразных халькогенов или фугитивностей халькогенов при фиксированной температуре строились диаграммы $f(X_2)-1/T$ и $f(S_2)-f(Se_2)-f(Te_2)$. Расчет фугитивностей газообразных халькогенов производился из экспериментально полученных ЭДС-методом термодинамических данных и вспомогательных данных по газообразным халькогенам (Barin, 1995). В результате анализа полученных зависимостей сделаны следующие выводы:

– термодинамическая устойчивость тройного соединения Ag_3AuX_2 увеличивается в ряду S–Te–Se при температурах ниже примерно 410 K и в ряду S–Se–Te при температурах выше примерно 410 K;

– бинарные халькогениды золота имеют различный стехиометрический состав Au₂S, AuSe и AuTe₂, причем сульфид золота представляет собой метастабильное соединение, являющееся конечным членом псевдо-бинарного сечения Ag₂S–Au₂S, а в природе встречается только теллурид золота (AuTe₂, калаверит). Относительная термодинамическая устойчивость халькогенидов золота увеличивается в ряду Au₂S-AuSe-AuTe₂;

– термодинамическая устойчивость халькогенидов серебра увеличивается в ряду $Ag_5Te_3-Ag_{1.9}Te-Ag_2S-Ag_2Se-Ag_2Te$, причем, практически во всем изученном температурном диапазоне образование Ag_2Te и Ag_2Se равновероятно. При температуре выше 733 К (согласно диаграмме Karakaya, Thompson, 1991) устойчива только твердофазная ассоциация Ag_2Te .

Литература

Barin I. (1995) Thermochemical Data of Pure Substances // VCH. Vol. 1

Cabri L. J. Phase relations in the Ag–Au–Te system and their mineralogical significance // Economic Geology, 1965. Vol. 60(8). P. 1569–1606.

Honea R. M. Empressite and stuetzite redefined // American Mineralogist, 1964. Vol. 49. P. 325–338.

Karakaya I., Thomson W. T. The Ag-Te System // Journal of Phase Equilibria, 1991. Vol. 12. 1.

Markham N. L. Synthetic and natural phases in the system Au–Ag–Te // Economic Geology, 1960. Vol. 55. P. 1460–1477.

Osadchii E. G., Chareev D. A. Thermodynamic Studies of Pyrrhotite-Pyrite Equilibria in the Ag–Fe–S System by Solid-State Galvanic Cell Technique at 518 to 723 K and Total Pressure of 1 atm // Geochim. Cosmochim. Acta. 2006. Vol. 70. P. 5617–5633.

Osadchii E., Echmaeva E. The System Ag–Au–Se: Phase Relations below 405 K and Determination of Standard Thermodynamic Properties of Selenides by Solid-State Galvanic Cell Technique // American Mineralogist, 2007. Vol. 92. P. 640–647.

Osadchii E. G. and Rappo O. A. Determination of standard thermodynamic properties of sulfides in the Ag–Au–S system by means of a solid-state galvanic cell // American Mineralogist, 2004. V. 89. P. 1405–1410.