ИССЛЕДОВАНИЕ ОКРАСКИ ДЕКОРАТИВНЫХ ОБСИДИАНОВ ПРОЯВЛЕНИЯ МАЛЫЙ ПАЯЛПАН (КАМЧАТКА)

Т. С. Ерёмина

ОАО «Камчатгеология», г. Петропавловск-Камчатский, eremina_ts@list.ru

На Камчатке насчитывается более полусотни месторождений и проявлений обсидиана, среди которых встречаются разновидности, обладающие высокими декоративными качествами. К ним относятся знаменитые голубые и иризирующие обсидианы проявления Малый Паялпан.

Проявление расположено в Срединном хребте п-ова Камчатка, к северу от вулкана Ичинская сопка (рис. 1). Оно образовано пространственно разобщенными сериями линзовидных и пластовых тел обсидианов, которые сформировались в генетической связи с кислыми экструзивными, эффузивными и пирокластическими образованиями плиоценсреднечетвертичного возраста [Отчет, 1993]. Распределение декоративных разновидностей обсидиана в пределах линз и пластов крайне неравномерно, и до сих пор не изучалось. Характеристика их окраски и особенностей сводилась к визуальному и сокращенному петрографическому описаниям.

Рис. 1. Схематическая геологическая карта проявления обсидиана и перлита Малый Паялпан [Кропачев, 1993]. Условные обозначения: 1 – аллювиальные, элювиальные, коллювиальные отложения Q_{IV} ; 2 – базальты βQ_{IV}^2 ; 3 – базальты, шлаки βQ_{IV}^{1} ; 4 – риолиты λN_2 ; 5 – дациты ζN_2 ; 6 – андезиты N_2 ; 7 – андезиты ON_2 ; 8 – коллювиальные шлейфы обсидианов; 9, 10 – линзы обсидианов и их номера; 11 – тектонические разломы; 12 – участки поисковых работ на обсидиан.

Для исследования декоративных свойств вулканических стекол проявления Малый Паялпан оптическими методами, были изготовлены прозрачные шлифы, двусторонне полированные пластинки, полировки голубых и иризирующих разностей.

Все изученные обсидианы обладают в той или иной степени проявленной флюидальной текстурой. Флюидальные полосы варьируют по мощности от нескольких сантиметров до 1–2 мм и менее. Они разделяются по цвету на черные, темно-бурые иризи-

Рис. 2. Микрофотография пластинки иризирующего голубого обсидиана.

Цифрами отмечены различающиеся слойки: 1 – изотропное стекло с небольшой примесью рассеянной рудной пыли; 2 – дымчатые голубовато-серые полосы, сложенные кристаллитами и прозрачным стеклом; 3 – бурые слойки стекла со значительной примесью гематита и магнетита. На выносках – субпараллельные «шлейфы» чешуек гематита (некоторые отмечены пунктиром).

рующие, дымчатые голубые, а под микроскопом демонстрируют и разное строение (рис. 2). Голубовато-серый и голубой цвет полос определяется сочетанием прозрачного, лишенного примесей низкопреломляющего вулканического стекла и компактно расположенных в нем кристаллитов плагиоклаза. Матовые черные полосы слагаются стеклом с равномерной примесью рудной пыли.

Темно-бурые слои состоят из интенсивно окрашенного в коричневые тона вулканического стекла с неоднородно распределенным в нем рудным веществом. Микрочастицы рудных минералов (гематита и магнетита) концентрируются в тонкие субпараллельные «шлейфы», которые располагаются под небольшим углом к линиям флюидальности. В пределах «шлейфов» чешуи гематита также располагаются ориентировано, что приводит к появлению иризации. В связи с таким строением, само явление может быть заметно только при распиливании обсидианов по плоскостям иризирующих полос или близко к ним.

Исследование оксидов железа, присутствующих в породе в качестве рудной примеси проводилось методом термического анализа. Пробы отбирались из слоев с равномерно рассеянной рудной пылью. Навески массой 30 мг нагревались в корундовых тиглях на термоанализаторе NETZSCH STA 449C от температуры 22.9 °C до 1200 °C со скоростью 10 К/мин сначала в воздухе, затем в атмосфере аргона. В результате были получены термогравиметрические кривые (ТГ) и кривые дифференциальной сканирующей калориметрии (ДСК), характеризующие тепловые эффекты, происходившие в пробах во время их нагрева (рис. 3).

Рис. 3. Термограммы образца голубого обсидиана. Черным цветом выделены кривые ТГ снятые в атмосфере аргона [1] и воздуха [3], серым [2] – кривая ДСК (аргон).

Кривые ДСК, полученные для образцов, прокаленных в атмосферах воздуха и аргона, обладают одинаковым набором пиков, отвечающих одним и тем же процессам. При температуре 420 °C начинается релаксация стекла [Nowak et al., 2001] с последующей структурной перестройкой («докристаллизацией»), отмеченной на завершающих этапах экзоэффектом при 989 °C. Термогравиметрические кривые, снятые в атмосфере аргона и воздуха, напротив, заметно отличаются. С 420 °С на кривых ТГ образцов, нагреваемых в атмосфере аргона, фиксируется постепенная потеря массы, обусловленная удалением летучих и OH⁻ из системы и разрушением характерных для стекла [Behrens et al., 2003] прочных связей гидроксила с катионами ближнего порядка Si⁴⁺, Al³⁺, Fe³⁺, Fe²⁺, Mg²⁺ и др. Температурный интервал разрыва этих связей и, следовательно, удаления гидроксильной воды может быть достаточно широким, вплоть до начала плавления стекла [Keppler et al., 1993]. Процессы перестройки стекла и разрыва связей гидроксила с металлами инициируют начало их окисления, в случае доступа к ним кислорода. При этом двухвалентное железо переходит в трехвалентную форму, и магнетит превращается в гематит. Именно с тем, что процесс захвата металлами кислорода идет интенсивнее удаления летучих компонентов, связано фиксирующееся на кривых ТГ, полученных при прокаливании образцов в воздухе, увеличение их массы.

Исходя из результатов термоанализа голубых обсидианов, можно предположить, что иризирующие разновидности камня вероятнее всего, будут локализованы вблизи периферийных частей обсидиановых тел, там, где восстановительная обстановка сменялась окислительной.

Литература

Behrens H., Nowak M. Quantification of H_2O speciation in silicate glasses and melts by IR spectroscopy – *in situ* versus quench techniques // Phase Transitions. 2003. V. 76. No. 1–2. P. 45–61.

Keppler H., Bagdassarov N. High-temperature FTIR spectra of H_2O in rhyolite melt to 1300 °C // American Mineralogist. 1993. V. 78. P. 1324–1327.

Nowak M., Behrens H. Water in rhyolitic magmas: getting a grip on a slippery problem // Earth and science letters. 2001. V. 184. P. 515–522.

Отчет о результатах поисков и поисково-оценочных работ на проявлении обсидиана и перлита Малый Паялпан за 1991–1993 гг. / Отв. исп. *Н. А. Кропачев*. Петропавловск-Камчатский. 1993.