В. В. Шиловских¹, Н. А. Власенко¹, С. Н. Волков², О. С. Верещагин¹, О. А. Ложкина¹ ¹ – Санкт-Петербургский государственный университет, г. Санкт-Петербург vvshlvskh@gmail.com ² – Институт химии силикатов РАН, г. Санкт-Петербург

Применение метода EBSD для решения минералогических и кристаллографических задач

Развитие технологий инструментального анализа и их распространение позволяет решать научные и прикладные задачи на недоступном ранее уровне. Исследование дифракции обратно рассеянных электронов (EBSD) – один из методов электронной микроскопии, заключающийся в регистрации распределения электронов, отраженных от моно- или поликристаллического образца в направлении люминесцентного экрана. Картины дифракции электронов (картины Кикучи) используются для получения информации о типе кристаллической решетки и ориентировке кристаллов на микро- и наноуровне. Высокая локальность и большой объем получаемой информации делает метод EBSD хорошим решением задач материаловедения, несмотря на определенные ограничения и сложную пробоподготовку.

Данные электронной дифракции имеют первостепенную важность для кристаллогенезиса, определения границ и направления роста кристаллов, выявления процессов эпитаксии и двойникования. В некоторых случаях возможна идентификация минералов, не поддающихся определению иными методами, таких, как политипные модификации, микро- и нановключения [Schwartz et al., 2009]. В работе рассмотрены возможности метода на примерах исследования эпитаксии синтетических галогенидных свинцовых соединений со структурой перовскита, подтверждения структуры для редкоземельных арсенатов, минералов аналогов гаспарита и ретциана и подтверждения двойникования боросиликата кальция β-Ca₁₁B₂Si₄O₂₂.

Слой гибридного органо-неорганического кубического (Pm-3m) MAPbBr₃ [Mashiyama et al., 1998] был выращен на затравке орторомбического (Pnma) CsPbBr₃ [https://materials.springer.com/isp/crystallographic/docs/sd_1623827]. Соединения обладают сходной, но не одинаковой структурой и целью дифракционного исследования микрокристалла было доказательство эпитаксиального роста слоя. Для получения бездефектной поверхности был получен свежий скол кристалла, с которого без дальнейшей пробоподготовки получены картины Кикучи (рис. а) на СЭМ Hitachi S-3400N с приставкой Oxford NordLys Nano (ускоряющее напряжение 20 кВ, ток зонда 0.5 нА, угол наклона образца 70°, время экспозиции – 1 с/кадр). Взаимное соответствие ориентировки полос на картине дифракции говорит о согласованном росте – эпитаксии.

При исследовании образца марганцевых руд методом электронной микроскопии с сопутствующим энергодисперсионным элементным анализом обнаружены зерна арсенатов La двух типов размером не более 10 мкм. Составу зерен первого типа соответствует формула LaAsO₄, второго – Mn₂La(AsO₄)(OH)₄. Для получения бездефектной поверхности плоско-полированный шлиф был очищен от токопроводящего напыления и обработан плазмой в установке Oxford IonFab 300 при следующих параметрах: аргоновая плазма, экспозиция 10 минут, угол 60°, ускоряющее напряжение

Рис. а) гетерограница кубического (Pm-3m) MAPbBr₃ и орторомбического (Pnma) CsPbBr₃, на врезках картины Кикучи соответствующих областей; б) картины Кикучи с наложенными симуляциями решения на основе структурных данных La-ретциана (MAD 0.45°) и Сегаспарита (MAD 0.10°); в) полюсные фигуры ориентаций кристаллографических направлений <100>, <010>, <001> для двойникового кристалла β-Ca₁₁B₂Si₄O₂₂

500 В, ток 200 мА. Для выбранных зерен получены картины Кикучи на том же оборудовании и при тех же параметрах (за исключением времени экспозиции 9 с/кадр, усреднение по трем кадрам) и проиндексированы в автоматическом режиме с использованием программного пакета AzTecHKL. В качестве кандидатов для индексирования выбраны цериевый аналог Ce-гаспарит (CeAsO4) [Graeser, Schwander, 1987] и La-ретциан (Mn₂La(AsO₄)(OH)₄) [Moore, 1968]. Совпадение картин и малые значения среднего углового отклонения (MAD, 0.45° для La-ретциана и 0.10° для Ce-гаспарита) (рис. б) говорят об обнаружении La-ретциана и лантанового аналога гаспарита.

Порошок боросиликата Са состава β -Ca₁₁B₂Si₄O₂₂ был закреплен в эпоксидной смоле, отполирован и обработан плазмой по методике, указанной выше. С поверхности 15×20 мкм и шагом 300 нм сняты картины Кикучи на том же оборудовании и при тех же параметрах (за исключением времени экспозиции 1 с/кадр, усреднение по пяти кадрам). Для каждой картины по заранее рассчитанной структурной модели проведена идентификация, определена ориентировка кристалла и по расчетным данным построены полюсные фигуры, на которых обнаружены области, соответствующие расчетным шести компонентам двойникования (рис. в) [Volkov et al., 2018].

Таким образом, в комбинации с элементным микроанализом метод EBSD способен разрешать случаи тонких минеральных срастаний и однозначно определять кристаллические фазы, размер которых недостаточен для выделения и проведения рентгеноструктурного анализа. Этот метод также позволяет получить наглядные и исчерпывающие сведения о кристаллогенезисе и структуре кристаллов на микроуровне.

Работы выполнены в ресурсных центрах «Геомодель» и «Нанофотоника» Научного парка СПбГУ.

Литература

Graeser St., Schwander H. Gasparite-(Ce) and monazite-(Nd): two new minerals to the monazite group from the Alps // Schweizerische Mineralogische und Petrographische Mitteilungen. 1987. № 67. P. 101–113.

Mashiyama H., Kurihara Y., Azetsu T. Disordered cubic perovskite structure of CH₃NH₃PbX₃ (X = Cl, Br, I) // Journal of Korean Physical Society. 1998. № 32. P. 156–158.

Moore P. B. Contributions to Swedish mineralogy. I. Studies on the basic arsenates of manganese: retzian, hemafibrite, synadelphite, arsenoclasite, arseniopleite, and akrochordite // Arkiv för Kemi, Mineralogi och Geologi. 1968. \mathbb{N} 4(5). P. 425–444.

Schwartz A. J., Kumar M., Adams B. L., Field D. P. Electron backscatter diffraction in materials science. Springer, 2009. 393 p.

Volkov S. N., Yukhno V. A., Bubnova R. S., Shilovskikh V. V. β-Ca11B2Si4O22: six-fold twinning, crystal structure and thermal expansion // Zeitschrift für Kristallographie – Crystalline Materials. 2018, DOI: https://doi.org/10.1515/zkri-2017-2112.

> *М. В. Стрелецкая¹, Д. В. Киселева¹, М. В. Зайцева¹, Е. В. Белогуб²* ¹ – Институт геологии и геохимии УрО РАН, г. Екатеринбург Isotop-igg@mail.ru ² – Институт минералогии УрО РАН, г. Миасс

Изотопный анализ меди в медьсодержащих сульфидах с использованием мультиколлекторной масс-спектрометрии с индуктивно связанной плазмой

К изотопному составу меди проявляют интерес исследователи в различных областях науки [Vanhaecke et al., 2009], в первую очередь, геохимии и гидрологии. В тесной связи также находится экология с изучением источников и путей миграции загрязнений в областях рудодобычи и предприятий по производству меди. По причине того, что объектом исследования в изотопном анализе являются весьма незначительные вариации изотопного состава элемента, его основополагающей характеристикой является прецизионность. По основным характеристикам мультиколлекторные магнитосекторные масс-спектрометры с индуктивно-связанной плазмой (МК ИСП МС) являются конкурентами термоионизационной масс-спектрометрии (ТИМС), признанной эталонным методом изотопного анализа [Vanhaecke et al., 2009]. Одним из преимуществ МК ИСП МС является возможность ионизации в плазме элементов с высоким потенциалом ионизации, таких как медь, при работе с которыми ТИМС оказывается неприменим [Моуnier et al., 2017].

Различия в эффективности экстракции, передачи и детектировании ионов приводят к значительному изменению измеряемого «реального» изотопного отношения от его истинного значения. Этот эффект получил название масс-дискриминации

Миасс: ИМин УрО РАН, 2018