Авторы выражают благодарность за помощь в проведении геохимических анализов член-корр. РАН В. В. Масленникову и д.г.-м.н. В. В. Мурзину.

Литература

Интерпретация геохимических данных // Под ред. Е. В. Склярова. М.: Интермет Инжиниринг, 2001. Т. І. 288 с.

Лысенко В. И., Цельмович В. А. Результаты изучения минералогии материала бактериальных палеопостроек миоцена из зон глубинной палеодегазации (юго-западный Крым) // Электронное научное издание «Альманах Пространство и Время». 2017. Вып. 1

Юдович Я. Э., Кетрис М. П. Геохимические индикаторы литогенеза (литологическая геохимия). Сыктывкар: Геопринт, 2011. 742 с.

О. П. Шиловский^{1, 2}, Д. В. Киселева³ ¹ – Казанский (Приволжский) федеральный университет, г. Казань ² – Музей естественной истории Татарстана, г. Казань nau@hotmail.ru ³ – Институт геологии и геохимии УрО РАН, г. Екатеринбург

Ископаемые клеточные структуры костной ткани ребра парейазавра

Нахождение мягких тканей позвоночных в ископаемом состоянии уже давно признано и описано в работах различных авторов [Martill, 1990; Chen et al., 1998; Manning et al., 2009]. Недавние исследования показали, что не только покровы и компоненты мягких тканей, такие как кожа [Manning et al., 2009], перья и другие покровные структуры [Chen et al., 1998], но и мышечные волокна [Martill, 1990] могут сохраняться в фоссилизированном виде. Так, после деминерализации ископаемых костей позднемелового динозавра Tyrannosaurus rex [Schweitzer et al., 2005] были выявлены прозрачные, гибкие, полые кровеносные сосуды, эластичный и упругий материал костной матрицы. Эндогенный белковый материал был изучен из костных фрагментов и мягких тканей другого динозавра – кампанского гадрозавра Brachylophosaurus canadensis [Schweitzer et al., 2009]. Остатки эндогенных коллагеновых волокон и структуры, соответствующие предполагаемым остаткам эритроцитов, были исследованы из восьми костных фрагментов меловых динозавров [Bertazzo et al., 2015]; красных и белых кровяных клеточных структур, коллагена и холестерола в кости ранне-юрского ихтиозавра [Plet et al., 2017]. Условия, при которых происходят процессы фоссилизации, приводящие к таким ископаемым находкам, скорее всего, являются исключением, а не правилом [Martill, 1990; Schweitzer et al., 2007; Plet et al., 2017].

Целью работы стало исследование клеточных структур ископаемой костной ткани ребра пермской парарептилии парейазавра *Deltavjatia vjatkensis* (Hartmann-Weinberg, 1937) и оценка степени их сохранности. Образец найден в отложениях ванюшонковской пачки северодвинского яруса на берегу р. Вятки на Котельничском местонахождении парейазавров [Киселева и др., 2017]. Данные зверообразные рептилии являются более древними, чем перечисленные выше динозавры. Фрагмент ребра был исследован с использованием СЭМ Carl Zeiss AURIGA CrossBeam с ЭДС Oxford instruments Inca X-Max (оператор А. А. Трифонов).

Миасс: ИМин УрО РАН, 2018

Рис. 1. Срезы концентрических костных пластинок остеонов в виде наслаивающихся друг на друга параллельных фтор-апатитовых и гидроксил-апатитовых минеральных образований.

Исследование фрагмента ископаемого ребра парейазавра показало, что кость имеет четко выраженное строение первичной структуры костной ткани [Киселева и др., 2017]. В шлифах хорошо проявлены структурные элементы плотного (компактного) костного и губчатого вещества кости, такие как костные пластинки, остеоны и гаверсовы каналы, что говорит о хорошей сохранности. Наружные пластинки, внутренние опоясывающие пластинки и остеоны компактного вещества кости, как и костные трабекулы губчатого вещества кости, пигментированы оксидамигидроксидами железа, придающими красно-бурую окраску всей костной ткани. Мощность области проникновения железистых агрегатов составляет 0.25–1.0 мм. Контакты с неизмененными участками резкие, ровные. Подобный характер распределения железистых окантовок и их четкие границы обусловлены, с одной стороны, внешним источником поступления минерализующего вещества, с другой – параллельной пространственной ориентировкой в костной ткани костных пластинок относительно наружных стенок.

Плотная костная ткань представлена различно-ориентированными пластинками: наружными и внутренними опоясывающими, концентрическими, формирующими остеоны, и интерстициальными, заполняющими пространство между остеонами. В скрещенных и параллельных николях хорошо видны срезы остеонов с отчетливо просматриваемыми лакунами остеоцитов и костными канальцами с отростками остеоцитов. Остеоны представлены наслаивающимися друг на друга параллельновытянутыми концентрическими костными пластинками, состоящими из фторапатитовых и гидроксил-апатитовых агрегатов (рис. 1). Плотное прилегание фосфатных костных пластинок затрудняет проникновение в костную ткань посторонних минеральных веществ, поэтому в областях плотной костной ткани вторичная минерализация развита слабо либо вообще отсутствует.

Гаверсовы каналы остеонов и межтрабекулярное пространство губчатого вещества кости выполнены различными кристаллическими формами аутигенного кальцита [Киселева и др., 2017]. Его зерна образуют плотные незакономерные срастания. В пределах агрегатов можно наблюдать элементы друзового роста, когда под действием фактора геометрического отбора преимущественное развитие получают кальцитовые кристаллы, ориентированные кристаллографической осью *с* перпендикулярно стенкам гаверсовых каналов в остеонах. Как правило, пристеночные области гаверсовых каналов и межтрабекулярных пространств выполнены кальцитовыми оторочками, состоящими из шестоватых зерен CaCO₃, форма которых обусловлена замещением соединительнотканного слоя, который выстилает изнутри гаверсовы каналы и внутренние полости (эндост) губчатого вещества кости. От этих оторочек к центру полостей отходят более крупные ромбоэдрические и скаленоэдрические кристаллы кальцита, которые увеличиваясь в размерах, постепенно заполняют все биопустоты. Во многих полостях губчатого вещества кости центральные части выполнены крупными, ксеноморфными кальцитовыми зернами.

По данным ЭДС анализа на участке, соответствующем костной ткани, обнаружены основные элементы Са, Р и F, вероятно, ассоциированные с фтор-апатитом костной ткани; фиксируются также примеси Na, Mg, Al, Si и S. Наличие Fe в составе костной ткани обусловлено пигментацией оксидами-гидроксидами железа. Во вмещающей породе определены Са, Fe, Si, P, Al, K и Mg, коррелирующие с присутствием кальцита, кварца, хлорита, слюды, альбита и гидроксидов железа в породах [Киселева и др., 2017]. Согласно [Plet et al., 2017], литологические обстановки с наличием обогащенных органическим веществом аргиллитов и известковых конкреций (которые характерны для Котельничского местонахождения парейазавров) способствуют отличной сохранности ископаемой костной ткани, а в некоторых исключительных случаях – и биомолекул этой ткани.

При исследовании трансверсального сечения остеона в гаверсовом канале на его внутренней полости обнаружен сохранившийся участками эндотелий кровеносных и лимфатических сосудов, состоящий из клеток мезенхимного происхождения и выстилающий их внутреннюю поверхность (рис. 2a, б).

На анфиладном сколе кости хорошо видно продольное сечение гаверсова канала, где, по нашим предположениям на основе морфологического сопоставления с современными аналогами [Bergman et al., 1996] и данными [Plet et al., 2017], сохранились форменные элементы крови – белые кровяные клетки (группа лейкоцитов), что может быть обусловлено посмертными процессами - застоем крови, концентрацией лимфатической жидкости, и, как следствие, защитной реакции (фагоцитоз) на инородные тела (бактерии) (рис. 2в, г). В пользу интерпретации ископаемых объектов как форменных элементов крови, а именно лейкоцитов, говорят форма, скульптура и размеры объектов. По результатам полуколичественного ЭДС анализа, для форменных элементов крови (группа лейкоцитов) (рис. 2г) отмечено высокое содержание Fe и присутствие Са и Р. Костное вещество остеона без Fe содержит Са, Р и F, что может свидетельствовать о преимущественно фтор-апатитовом составе костной ткани. а также повышенное содержание Се и Ni. Присутствие редокс-чувствительных элементов (Ni, Ce) в костной ткани явно демонстрирует наличие различных редоксмикрообстановок в порах в течение ранних стадий осадконакопления [Plet et al., 2017]. Наличие Се не противоречит полученным ранее данным по цериевым аномалиям, выявленным после валового ИСП МС микроанализа костной ткани фрагмента ребра парейазавра и свидетельствующим о наличии бескислородной восстановительной среды в условиях мелководных прибрежных бассейнов [Киселева и др., 2017].

Таким образом, в результате исследований фрагмента ископаемого ребра пермской парарептилии парейазавра *Deltavjatia vjatkensis* показано, что окружающая литологическая обстановка способствует сохранности ископаемой костной ткани и ее клеточных структур. По результатам СЭМ и ЭДС интерпретированы форменные элементы крови (лейкоциты). Вероятно, это старейшая сохранившаяся белая кровяная

Рис. 2. Трансверсальное сечение остеона (а) с внутренней стенкой гаверсова канала и сохранившимися клетками эндотелия – соединительнотканного слоя, выстилающего внутреннюю поверхность сосудов (б); в) анфиладный скол ребра парейазавра; г) гаверсов канал и форменный элемент крови из группы лейкоцитов (лимфоцит) в его полости.

клеточная структура, описанная к настоящему моменту. Форменные элементы крови и костное вещество имеют различный химический состав: для лейкоцитов характерно высокое содержание Fe и присутствие Ca и P, а для костного вещества остеона – отсутствие Fe, присутствие Ca, P и F и повышенное содержание Ce. Минеральная фаза костной ткани соответствует фтор-апатиту. Для подтверждения органической природы обнаруженной клеточной структуры и выявления ее происхождения (бактериального или из клеток крови) планируется провести дальнейшие биомолекулярные исследования.

Литература

Киселева Д. В., Шиловский О. П., Шагалов Е. С., Рянская А. Д. Особенности состава и структуры пермских тетрапод Котельничского местонахождения (р. Вятка) и их изменения при фоссилизации как основа для палеоэкологических реконструкций // Металлогения древних и современных океанов–2017. Дифференциация и причины разнообразия рудных месторождений. Миасс: ИМин УрО РАН, 2017. С. 249–252.

Bergman R. A., Afifi A. K., Heidger P. M., D'Alessandro M. P. Atlas of microscopic anatomy: a functional approach, 1996. http://www.anatomyatlases.org/.

Bertazzo S., Maidment S. C. R., Kallepitis C. et al. Fibres and cellular structures preserved in 75-million-year-old dinosaur specimens // Nature Communications. 2015. Vol. 6. ncomms8352.

Chen P. J., Dong Z.-M., Zhen S.-N. An exceptionally well-preserved theropod dinosaur from the Yixian Formation of China // Nature. 1998. Vol. 391. P. 147–152.

Manning P. L., Morris P. M., McMahon A. et al. Mineralized soft-tissue structure and chemistry in a mummified hadrosaur from the Hell Creek Formation, North Dakota (USA) // Proceedings of the Royal Society B. 2009. Vol. 276. P. 3429–3437.

Martill D. M. Macromolecular resolution of fossilized muscle tissue from an elopomorph fish // Nature. 1990. Vol . 346. P. 171–172.

Plet C., Grice K., Pagès A. et al. Palaeobiology of red and white blood cell-like structures, collagen and cholesterol in an ichthyosaur bone // Nature Scientific Reports. 2017. Vol. 7. Article number 13776.

Schweitzer M. H., Wittmeyer J. L., Horner J. R., Toporski J. K. Soft-tissue vessels and cellular preservation in Tyrannosaurus rex // Science. 2005. Vol. 307. P. 1952–1955.

Schweitzer M. H., Wittmeyer J. L., Horner J. R. Soft tissue and cellular preservation in vertebrate skeletal elements from the Cretaceous to the present // Proceedings of the Royal Society B. 2007. Vol. 274. P. 183–197.

Schweitzer M. H., Zheng W., Organ C. L. et al. Biomolecular characterization and protein sequences of the Campanian hadrosaur B. Canadensis // Science. 2009. Vol. 324. P. 626–631.

Д. В. Киселева¹, О. П. Шиловский^{2, 3}, М. В. Зайцева¹, Е. А. Панкрушина^{1, 4} ¹ – Институт геологии и геохимии УрО РАН, г. Екатеринбург kiseleva@igg.uran.ru ² – Казанский (Приволжский) федеральный университет, г. Казань ³ – Музей естественной истории Татарстана, г. Казань ⁴ – Уральский федеральный университет, г. Екатеринбург

Исследование локальных особенностей фоссилизации костной ткани пермского парейазавра *Deltavjatia vjatkensis*

Для описания свойств материалов с развитой структурой и сложным составом необходимо применение комплексного аналитического подхода. Такие исследования требуют проведения качественного и (полу)количественного анализа изображений, полученного с использованием сканирующей (просвечивающей) электронной микроскопии с энергодисперсионным анализом, электронно-зондового микроанализа, масс-спектрометрии с индукционно связанной плазмой и лазерной абляцией, рамановской микроспектроскопии и др.

Целью работы стало исследование локальных особенностей состава и структуры ископаемого ребра пермской парарептилии парейазавра *Deltavjatia vjatkensis*, а также зон контакта с вмещающей породой и новообразованными в биопустотах минералами. Изученный фрагмент найден в отложениях ванюшонковской пачки северодвинского яруса на берегу р. Вятки на Котельничском местонахождении парейазавров [Киселева и др., 2017]. Фрагменты были исследованы с использованием СЭМ Carl Zeiss AURIGA CrossBeam с ЭДС Oxford instruments Inca X-Max и последующим определением локального элементного состава в различных программных режимах (оператор А. А. Трифонов).

Микроэлементный состав определен методом квадрупольной масс-спектрометрии с индукционно связанной плазмой и лазерной абляцией (ЛА ИСП МС) на масс-спектрометре NexION 300S с использованием системы для лазерной абляции NWR 213 (New Wave Research). Операционные параметры лазера: энергия – 3 Дж/см²,