минералогии УрО РАН // Металлогения древних и современных океанов–2017. Дифференциация и причины разнообразия рудных месторождений. Миасс: ИМин УрО РАН, 2017. С. 201–206.

Грабежев А. И. Рений в медно-порфировых месторождениях Урала // Геология рудных месторождений. 2013. Т. 55. № 1. С. 16–32.

Грабежев А. И., Хиллер В. В. Рений в молибдените Томинского медно-порфирового месторождения (Южный Урал, Россия): результаты микрозондового изучения // Записки РМО. 2015. Ч. СХLIV. № 1. С. 81–93.

Ciobanu C. L., Cook N. J., Kelson C. R. et al. Trace element heterogeneity in molybdenite fingerprints stages of mineralization // Chemical Geology. 2013. Vol. 347. P. 175–189.

Cook N., Ciobanu C. L., George L. et al. Trace element analysis of minerals in magmatichydrothermal ores by laser ablation inductively-coupled plasma mass spectrometry: Approaches and Opportunities // Minerals. 2016. 6, 111; doi:10.3390/min6040111.

Pašava J., Svojtka M., Veselovský F. et al. Laser ablation ICPMS study of trace element chemistry in molybdenite coupled with scanning electron microscopy (SEM) – An important tool for identification of different types of mineralization// Ore Geology Reviews. 2016. Vol. 72. P. 874–895.

Plotinskaya O. Y., Abramova V. D., Groznova E. O. et al. Trace element geochemistry of molybdenite from porphyry Cu deposits of the Birgilda-Tomino ore cluster (South Urals, Russia) // Mineralogical Magazine. 2018. Vol. 82. № 2 (в печати).

Plotinskaya O. Y., Grabezhev A. I., Tessalina S. G. et al. Porphyry deposits of the Urals: geological framework and metallogeny // Ore Geology Reviews. 2017. Vol. 85. P. 153–173.

Stein H. J., Markey R. J., Morgan J. W. et al. The remarkable $\text{Re} \pm \text{Os}$ chronometer in molybdenite: how and why it works // Terra Nova. 2001. Vol. 13. P. 479–486.

Т. В. Светлицкая¹, К. А. Соловьев^{1, 2} ¹ – Институт геологии и минералогии СО РАН, г. Новосибирск svt@igm.nsc.ru

² – Новосибирский государственный университет, г. Новосибирск

Сульфидное оруденение интрузии Седова Заимка (Колывань-Томская складчатая зона, Россия): случай контактового метаморфизма медно-никелевых руд

Проблема диагностирования регенерированного магматического сульфидного оруденения и интерпретации метаморфогенно-гидротермальных рудных концентраций на сегодняшний день остается одной из недостаточно изученных и разработанных вопросов рудной геологии. Это может привести к построению ущербных генетических моделей, в которых преобразованные сульфидные руды ошибочно трактуются как первично-магматические. Интрузия Седова Заимка (40 км севернее г. Новосибирска, правый берег р. Обь) представляет собой небольшую габбро-перидотитовую интрузию, с которой пространственно связано сульфидное Cu-Ni оруденение. Она представляется хорошим объектом для изучения влияния контактового метаморфизма на преобразование магматических Cu-Ni руд, поскольку располагается среди пород роговикового ореола крупного гранитного массива, а ее юго-восточная часть находится в непосредственном контакте с кровлей гранитной интрузии. В данной работе мы приводим результаты структурно-текстурного и минералогогеохимического изучения сульфидного оруденения интрузии Седова Заимка, чтобы показать, какими изменениями сопровождается контактовый метаморфизм магматической Cu-Ni минерализации. Фактический материал для исследования включал в себя более 50 образцов керна из скважин, пробуренных в юго-восточной части интрузии в ходе глубинного геологического картирования на территории Мошковского и Колыванского районов Новосибирской области в 1977–1982 гг., в результате которого было открыто и оценено рудопроявление Седова Заимка [Петренко и др., 1982ф].

Интрузия Седова Заимка расположена в пределах Новосибирского прогиба Колывань-Томской складчатой зоны (КТЗ), в области сочленения ее с Западно-Сибирской плитой. Она принадлежит к ташаринскому пикрит-габбро-долеритовому комплексу пермского возраста, с которым в КТЗ пространственно и генетически связана сульфидная Cu-Ni минерализация [Глотов, 1984; Сотников и др., 1999; Росляков и др., 2011]. Интрузия имеет северо-западное простирание, протяженность ~500 м при ширине от 100 до 300 м и представляет собой лополитообразное тело, залегающее под маломощной толщей (20-30 м) неоген-четвертичных отложений, в 0.5 км от северо-западной зоны эндоконтакта Барлакского гранитного интрузива триасового возраста [Глотов, 1984]. Вмещающие Седову Заимку терригенные отложения верхнего девона – нижнего карбона метаморфизованы до роговиков пироксен-роговиковой фации. Минералого-петрографические и петрохимические особенности состава пород, слагающих интрузию Седова Заимка, представлены в работах [Дергачев и др., 1980; Петренко и др., 1982ф; Кривенко и др., 1983; Глотов, 1984; Глотов, Кривенко, 1990; Сотников и др., 1999]. Нижняя часть интрузии (около 1/3 от объема) сложена метаперидотитами, представляющими собой агрегат мелкозернистого амфибола, хлорита, талька, биотита, с редкими реликтами оливина, пироксенов и плагиоклаза. Верхняя часть интрузии (около 2/3 от объема) сложена метагаббро – породами, состоящими из агрегата игольчатых, пластинчатых или тонкочешуйчатых кристаллов амфибола, биотита, хлорита, иногда талька, с реликтовыми габбродолеритовыми участками.

В пределах интрузии Седова Заимка выделяют три основных текстурных типа руд [Дергачев и др., 1980; Петренко и др., 1982; Кривенко и др., 1983; Глотов, 1984; Росляков и др., 2011]: (1) массивные сульфидные (80–95 % сульфидов от объема породы) – маломощные линзовидные тела в метаперидотитовой части; (2) гнездово- и прожилково-вкрапленные руды (количество сульфидов от первых до 60–70 об. %), локализующиеся в метаперидотитах и метагаббро; (3) вкрапленные руды (количество сульфидов от первых до 20–30 об. %), приуроченные преимущественно к метагаббро. Главными минералами сульфидных руд являются пирротин, халькопирит, пентландит и виоларит. Акцессорные минералы представлены пиритом, а также сульфоарсенидами Ni и Co, арсенидами Ni, сфалеритом, аргентопентландитом, галенитом, теллуровисмутидами, висмутином, алтаитом, гесситом, самородным Bi [Светлицкая, 2017].

Изучение структурно-текстурных взаимоотношений, химического состава и внутреннего строения сульфидов из основных типов руд интрузии Седова Заимка позволило выявить следующие особенности. Массивные руды сложены крупными (до 5–7 мм) порфировидными агрегатами виоларита (Ni_{1.56}Fe_{1.35}Co_{0.09}S₄, 7–10 % от общего количества сульфидов), который практически полностью замещает пентландит (Fe_{3.74.0}Ni_{4.54.9}Co_{0.2-0.4}S₈), и более мелкими ксеноморфными зернами халькопирита (3–5 %) в матриксе агрегатов мелкозернистых сотовидных зерен пирротина (Fe_{0.86-0.91}S, 85–90 %). Пирротин характеризуется отсутствием ламелей пентландита и содержит

включения нерудных минералов и хромистого магнетита. Халькопирит содержит включения сфалерита. В массивных рудах в небольшом количестве (<1 %) присутствуют пирит, герсдорфит, никелин, маухерит. Внутри зерен пирротина отмечаются малочисленные микровключения алтаита, гессита, хедлеита.

Гнездово- и прожилково-вкрапленные сульфидные руды сложены пирротином (Fe_{0.85-0.91}S, 90–95 %), который содержит изометричные и прожилковидные выделения виоларита (Ni_{1.47-1.80}Fe_{1.07-1.35}Co_{0.09-0.27}S₄) и/или пентландита (Fe_{4.7-5.3}Ni_{3.8-5.1}Co_{0.09-0.50}S₈) (1-2 %). Халькопирит (3-5 %) развит по периферии гнезд и вкрапленников, а также слагает тонкие прожилки в породе. В непосредственной близости от контакта с гранитной интрузией богатые сульфидные руды характеризуются полосчатой текстурой. Повсеместно сульфидные гнезда и вкрапленники в породе сопровождаются ореолом тонкой интерстициальной сульфидной вкрапленности (пирротин, виоларит и халькопирит выполняют интерстиции между игольчатыми зернами амфибола). Широко развиты октаздрические сетки ильменита, приуроченные к краевым частям сульфидов. Пирротин и халькопирит содержат включения игольчатого амфибола, реже апатита, сфена, плагиоклаза, граната и часто встречаются в срастаниях с амфиболом, плагиоклазом, сфеном, биотитом, скаполитом. Пирротин представлен агрегатами мелких зерен с частым развитием границ между зернами под углом 120°. Внутри халькопирита отмечаются ксеноморфные и скелетные выделения сфалерита. Редко в срастании с халькопиритом устанавливается аргентопентландит $(Ag_{0.9-1.0}(Fe_{4.5-4.8}Ni_{3.3-3.4})S_8)$. По пирротину развивается пирит и герсдорфит; характерно присутствие самостоятельных зерен и прожилков герсдорфита в породе. Пирротин и халькопирит содержат микровключения галенита, алтаита, гессита, хедлеита. Хедлеит также отмечается в виде включений внутри зерен герсдорфита и в виде малочисленных самостоятельных выделений внутри скаполита.

Вкрапленные сульфидные руды по минеральному составу и структурнотекстурным взаимоотношениям аналогичны гнездово- и прожилково-вкрапленным рудам. В пирротине (Fe_{0.84-0.89}S, 90–95 %) отмечаются изометричные и прожилковидные выделения виоларита (Ni_{1.43-1.70}Fe_{1.14-1.44}Co_{0.13-0.16}S₄) и/или пентландита (Fe_{3.7-4.9}Ni_{3.8-4.7}Co_{0.3-1.30}S₈) (1–2 %). Халькопирит (3–5 %) тяготеет к периферийным частям сульфидных вкрапленников, а также слагает тонкие прожилки в породе. Во вкрапленных рудах в небольшом количестве (менее 1 %) присутствуют сфалерит, пирит, герсдорфит, кобальтин. Внутри зерен пирротина отмечаются микровключения галенита, алтаита и гессита, герсдорфит содержит редкие включения хедлеита и галенита.

Как показывают наши исследования, около 95 % объема сульфидных руд рудопроявления Седова Заимка сложено пирротином, халькопиритом и пентландитом, при этом количество пирротина во всех текстурных типах руд составляет более 85 %. Выдержанный минеральный состав и пространственная ассоциация сульфидного оруденения с интрузивными ультрамафит-мафитовыми породами предполагает магматическое ликвационное происхождение основного объема сульфидных руд. Присутствие округлых пирротиновых включений («сульфидных капель») в оливине с включениями хромшпинелидов из габбро верхней части интрузии свидетельствует о том, что сульфидная ликвация произошла до кристаллизации оливина. В то же время, широкое развитие гнездово- и прожилково-вкрапленных сульфидных руд не согласуется с магматическим генезисом, т. к. способность сульфидной жидкости к миграции по ослабленным зонам в породе крайне ограничена [Mungall, Su, 2005], и указывает на интенсивное перемещение рудного вещества в пределах интрузии в ходе регрессивного этапа контактового метаморфизма. Тесная пространственная связь сульфидов с новообразованными силикатами выражена в присутствии (1) многочисленных включений игольчатого амфибола, реже апатита, сфена, плагиоклаза, граната в пирротине и халькопирите, (2) срастаний сульфидов с амфиболом, плагиоклазом, эпидотом, сфеном, бледноокрашенным биотитом, скаполитом, (3) тонкой вкрапленности пирротина, пентландита и халькопирита в интерстициях между игольчатыми и спутанно-волокнистыми агрегатами амфибола вокруг сульфидных вкрапленников и указывает на близодновременное формирование сульфидов и силикатов на регрессивной стадии контактового метаморфизма при активном участии воды. Многочисленные сетки ильменита в пирротине (ильменитовые «скелеты»), образовавшиеся при распаде титаномагнетита с последующим замещением магнетита пирротином, и отсутствие пирита в рудных парагенезисах указывают на то, что регрессивный этап метаморфизма проходил в существенно восстановительных условиях при высокой фугитивности серы и низкой активности кислорода.

Пирротин во всех текстурных типах сульфидных руд интрузии Седовой Заимки характеризуется стабильным отношением Fe/S (0.85–0.91) и широкими вариациями Ni (0.1–1.7 мас. %). Отношение Fe/S не зависит от текстурного типа руды или гипсометрического положения в разрезе интрузии и не коррелирует с содержаниями Ni в пирротине. Подобные особенности состава, совместно с отсутствием зависимости между составами пирротина и ассоциирующего с ним пентландита, указывают на то, что исходный состав пирротина был существенно преобразован, и новообразованный пирротин по своим химическим особенностям кардинально отличается от магматического.

Таким образом, контактовый метаморфизм магматической сульфидной минерализации интрузии Седова Заимка сопровождался изменением (1) текстур (появление полосчатых текстур; присутствие октаэдрических сеток ильменита в сульфидах; тесная ассоциация сульфидов с вторичными силикатами), (2) структур (появление порфиробластовых и гранобластовых структур, эмульсионные структуры распада сфалерита в халькопирите) и (3) минералогии (присутствие Fe-Ni-Co сульфоарсенидов и арсенидов, пирита, хедлеита, галенита, гессита, алтаита, преобладание моноклинного пирротина с широкими вариациями Ni, отсутствие зависимости между составами пирротина и ассоциирующего пентландита).

Работа выполнена в рамках реализации гранта Президента Российской Федерации № МК-5159.2018.5 и при финансовой поддержке гранта РФФИ (проект 16-05-00980).

Литература

Глотов А. И. Никеленосная пикрит-долеритовая формация Новосибирского Приобья // Дис. ... канд. геол.-мин. наук. Новосибирск: Институт геологии и геофизики СО АН СССР, 1984. 247 с.

Глотов А. И., Кривенко А. П. Пермотриасовые габброиды Новосибирского Приобья / Медь-никеленосные габброидные формации складчатых областей Сибири / Отв. ред. А. П. Кривенко, Г. В. Поляков. Новосибирск: Наука, 1990. С. 146–172.

Дергачев В. Б., Глотов А. И., Терехов В. Н., Брюзгин Л. А. Седовозаимский габброперидотитовый массив и связанное с ним сульфидное медно-никелевое оруденение // Геология и геофизика. 1980. Т. 21. № 11. С. 133–138. Кривенко А. П., Глотов А. И., Казеннов А. И., Мисюк В. Д. Петрология никеленосного пикрит-долеритового комплекса в Новосибирском Приобье / В кн.: Петрология и рудоносность магматических формаций Сибири. Отв. ред. Ю. А. Кузнецов. Новосибирск: Наука, 1983. С. 5–48.

Петренко Н. Л., Терехов В. Н., Неволько А. И., Козлова В. М. Геологическое строение и полезные ископаемые листов N-44-22-Б, Г и N-44-23-В. Отчет Чаусского участка геологосъемочной партии о результатах ГГК масштаба 1:50 000 за 1977–1982 гг. Новосибирск, 1982ф (Фонды НПГО).

Росляков Н. А., Щербаков Ю. Г., Алабин Л. В. и др. Минерагения области сочленения Салаира и Колывань-Томской складчатой зоны. Новосибирск: СО РАН, филиал «Гео», 2011. 243 с.

Светлицкая Т. В. Первая находка палладийсодержащего галенита (медно-никелевое рудопроявление Седова Заимка, Западная Сибирь) // Доклады Академии Наук. 2017. Т. 476. № 2. С. 186–189.

Сотников В. И., Федосеев Г. С., Кунгурцев Л. В. и др. Геодинамика, магматизм и металлогения Колывань-Томской складчатой зоны. Новосибирск: СО РАН, НИЦ ОИГГМ, 1999. 227 с.

Mungall J. E., Su S. Interfacial tension between magmatic sulfide and silicate liquids: constraints on kinetics of sulfide liquation and sulfide migration through silicate rocks // Earth and Planetary Science Letters. 2005. Vol. 234. P. 135–149.

Е. А. Пихутин Сибирский научно-исследовательский институт геологии, геофизики и минерального сырья (СНИИГГиМС), г. Новосибирск ea.pi@ya.ru

Интерпретация аномальных геохимических полей в восточной части Восточно-Таннуольского рудного района (Республика Тыва)

Восточно-Таннуольский рудный район (ВТРР) расположен в южной части Республики Тыва, на границе России с Монголией, и относится к Таннуольско-Улугойской зоне Алтае-Саянской минерагенической провинции. Для всей Таннуольско-Улугойской минерагенической зоны характерен комплекс металлических полезных ископаемых, генетически связанных с островодужными венд(?)-раннекембрийскими вулканогенно-осадочными комплексами и прорывающими их кембрийскоордовикскими гранитоидами аккреционно-коллизионного этапа [Руднев, 2013].

В пределах ВТРР известны многочисленные проявления и пункты минерализации золота (Аптаринский прогнозируемый узел) золото-сульфидно-кварцевой формации, меди, свинца, цинка колчеданно-полиметаллической формации (Ирбитейский прогнозируемый узел), меди и молибдена молибден-медно-порфировой формации, а также железа, меди, свинца, серебра в скарнах и кварцевых жилах. Основная часть перспективных объектов полезных ископаемых и прогнозируемых узлов приходится на западную часть района, минерагеническое районирование которой выполнено при проведении ГДП-200 листа М-46-Х (Хову-Аксы) [Ветров и др., 2016ф; Черных и др., 2017]. Восточная часть района с аналогично высокими перспективами остается незатронутой современными региональными исследованиями.

Работа выполнена при создании геохимической основы листа М-46-XI (Бай-Хаак) в рамках геолого-съемочных работ подготовительного периода. В основу