структура замещенных карбонатных ксенолитов; с этим связана более короткая длина волокна (чешуйки) слагающих породу тремолитов.

Литература

Кислов Е. В. Минерально-сырьевая база северных и восточных районов Бурятии: воспроизводство и освоение // География и природные ресурсы. 2015. № 2. С. 156–163. Сутурин А. Н., Замалетдинов Р. С. Нефриты. М.: Наука, 1984. 288 с.

Liu Y., Deng Ju., Shi G., Yui T-F., Zhang G., Abuduwayiti M., Yang L., Sun X. Geochemistry and petrology of nephrite from Alamas, Xinjiang, NW China // Journal of Asian Earth Sciences. 2011. № 3. C. 440–451.

> О. С. Ефименко, Е. Н. Диханов, С. А. Ефименко ТОО «Корпорация Казахмыс», г. Жезказган, Казахстан olga91.06@yandex.ru

О возможности использования энергодисперсионного рентгенофлуоресцентного спектрометра РЛП-21 (ЛА) в геологии

Методы сканирующей электронной микроскопии (СЭМ) широко применяются в геологии. Микрорентгеноспектральный анализ проводят при помощи электронного зонда, который дает возможность исследовать состав вещества в точке, определить характер микровключений и дать им качественную оценку. Известен также рентгенофлуоресцентный локальный микроанализ с использованием рентгеновского излучения от рентгеновской трубки. Задача нашего исследования состояла в выяснении возможности использования спектрометров рентгенофлуоресцентного локального микроанализа для решения геологических и минералогических задач. Для проведения исследований нами были выбраны энергодисперсионные рентгенофлуоресцентные (EDXRF) спектрометры локального анализа РЛП-21Т (ЛА) казахстанского производства (ТОО «Аспап Гео») из пробирной палаты «Национального центра экспертизы и сертификации» (НЦЭиС) РК и Гохрана Национального банка РК.

РЛП-21Т (ЛА) позволяет работать с пробами нестандартных размеров (диаметр до 170 мм и высотой до 120 мм), проводить локальный анализ, оценивать однородность анализируемых сплавов благородных металлов, проводить сигнатурный анализ. Основные характеристики спектрометра РЛП-21Т (ЛА):

 – рентгеновская трубка мощностью 50 Вт с торцевым выходом излучения, что обеспечивает высокую светосилу и возможность определения элементов от Al до U в воздушной атмосфере;

 полупроводниковый кремниевый дрейфовый (SDD) детектор с внутренним коллиматором, что обеспечивает отличное энергетическое разрешение (135 эВ), высокую интегральную загрузку и отношение пик/фон, а также повышает контрастность аналитических линий;

 – мощное программное обеспечение, позволяющее точно определять функцию отклика каждого детектора, спектральный состав возбуждающего излучения, а также пики двойных и тройных наложений;

Миасс: ИМин УрО РАН, 2016

 опция восстановления спектра вторичного излучения, посредством которой обеспечивается точное нахождение истинных интенсивностей аналитических линий элементов; при этом используется нелинейный метод наименьших квадратов и учет зависимости относительных интенсивностей характеристических линий от вещественного состава;

 – опция учета матричных эффектов путем применения фундаментальных алгоритмов (в том числе и для рассеянного излучения), обеспечивающая учет изменения геометрических условий измерений при вариациях вещественного состава и плотности анализируемых образцов;

– количественный анализ в диапазоне элементов от Al до U при концентрациях от $n \times 10^{-3}$ до 100 % для средней области элементов и от $n \times 10^{-1}$ % для легких элементов;

 – опция локального анализа: система возбуждения обеспечивает проведение локального анализа с площадью засветки образца от 1 мм²;

- наличие видеокамеры для точной юстировки анализируемого образца.

В первую очередь, нас интересовала способность РЛП-21Т (ЛА) определять содержания элементов-примесей на очень тяжелой матрице, в частности, на анодной меди. Использовалась анодная медь Балхашского медеплавильного завода «Kazakhmys Smelting» с содержанием меди до 99.5 %. Исследования выполнены в несколько этапов.

На первых двух этапах (Пробирная палата «НЦЭиС») на РЛП-21Т (ЛА) проанализированы два образца анодной меди с экспозицией 200 сек. Так как элементный состав примесей в образцах был неизвестен, то использовался режим, когда спектрометр определял содержания элементов, аналитические линии которых обнаружены в аппаратурных спектрах при включенной опции удаления из таблицы «Процентное содержание элементов» элементов по критерию С $< \Delta C = 2\sigma$ (σ – абсолютная среднеквадратическая погрешность анализа). Результаты первых двух этапов исследований подробно изложены в работах [Ефименко и др., 2015а, б, в].

На третьем этапе исследований (Гохран Национального банка РК) экспозиция измерений была увеличена до 600 с. При этом решались следующие задачи:

- снижение погрешности определений содержаний золота, цинка и теллура;

– изучение неоднородности химического состава цилиндрического образца анодной меди, возникающей при кристаллизации последнего, в плане (точки №№ 1 и 2 на одном торце цилиндра анодной меди, точки №№ 3 и 4 – на противоположном торце) и в разрезе цилиндра (торцы между собой);

– изучение неоднородности химического состава анодной меди (сравниваются цилиндрические образцы и стружка от сверления, полученные с одного анода).

Результаты эксперимента по изучению неоднородности химического состава цилиндрического образца анодной меди № 805 приведены в таблице 1.

Анализ данных табл. 1, а также сравнение их с данными [Ефименко и др., 2015а, б, в] позволяет сделать следующие выводы. За счет увеличения экспозиции измерений на столь сложной матрице удалось снизить погрешность результатов РФА анодной меди на золото, в среднем, с 0.0035 до 0.0018 %, теллур – с 0.0018 до 0.00089 % и цинк – с 0.0070 до 0.0041 %. Очевидно, что снижение погрешности РФА за счет увеличения экспозиции измерений бесперспективно: большие возможности открываются за счет оптимизации конструкции блока возбуждения и детектирования (повышение светосилы рентгенооптической схемы, подбор комбинированных вторичных мишеней и оптимальных геометрических условий). Фактор неоднородности химического состава анодной меди в плане и разрезе образцов присутствует, и ним нельзя

-					-			
Эле- мент	Точка № 1		Точка № 2		Точка № 3		Точка № 4	
	С, %	±ΔC, %						
Cu	99.666	0.017	99.667	0.017	99.573	0.017	99.565	0.017
Fe	0.0086	0.0012	0.0076	0.0011	0.0192	0.0012	0.0234	0.0012
Ni	0.0047	0.0014	0.0039	0.0014	0.0021	0.0014	0.0030	0.0014
As	0.0371	0.0011	0.0384	0.0011	0.0476	0.0012	0.0471	0.0012
Se	0.0340	0.00051	0.0348	0.00051	0.0438	0.00055	0.0436	0.00055
Ag	0.0943	0.00055	0.0930	0.00055	0.1104	0.00057	0.1095	0.00057
Sb	0.0166	0.00067	0.0162	0.00067	0.0219	0.00067	0.0206	0.00068
Te	0.0021	0.00089	0.0027	0.00088	0.0033	0.00088	0.0036	0.00089
Pb	0.1277	0.0013	0.1283	0.0013	0.1691	0.0014	0.1681	0.0015
Bi	0.0047	0.00075	0.0045	0.00074	0.0055	0.0008	0.0057	0.0008
Au	0.0039	0.0017	0.0038	0.0017	0.0030	0.0019	0.0033	0.0019
Zn	0.0100	0.0041	0.0095	0.0041	0.0125	0.0041	0.0139	0.0041

Данные РФА пробы № 805 анодной меди

пренебречь: если относительная величина расхождений содержаний элементов между точками № 1 и 2 имела размах 0.47–25.0 % (в среднем, 7.1 %), а между точками №3 и 4 – 0.46–35.3 % (в среднем, 8.7 %), то между точками №1 и 3 – 15.7–76.5 % (в среднем, 34.8 %) и между точками № 2 и 4 – 14.1–101.9 % (в среднем, 31.1 %). В партии образцов анодной меди, которые анализировались на третьем этапе исследований, не установлен индий ни в одном образце (образцы для первых двух этапов и для третьего этапа имели двухмесячное временное различие).

Результаты изучения неоднородности химического состава проб, отобранных с анода меди № 803 (цилиндр и стружка), приведены в таблице 2.

Таблица 2

Таблица 1

Эле- мент	№ 803/8-цил.		№ 803/9-цил.		№ 803-струж. №1		№ 803-струж. №2	
	С, %	±ΔC, %	С, %	±ΔC, %	С, %	±ΔC, %	С, %	±ΔC, %
Cu	99.488	0.017	99.482	0.017	99.554	0.017	99.549	0.017
Fe	0.0629	0.0012	0.0711	0.0012				
Ni	0.0081	0.0014	0.0089	0.0014	0.0069	0.0014	0.0079	0.0014
As	0.0471	0.0013	0.0478	0.0013	0.0446	0.0013	0.0462	0.0013
Se	0.0389	0.00053	0.0384	0.00053	0.0405	0.00055	0.0402	0.00055
Ag	0.1072	0.00057	0.1069	0.00057	0.1066	0.00057	0.1072	0.00057
Sb	0.0205	0.00068	0.0204	0.00068	0.0224	0.0007	0.0219	0.00069
Te	0.0034	0.00089	0.0031	0.00088	0.0035	0.00091	0.0032	0.00092
Pb	0.2051	0.0016	0.2043	0.0015	0.2017	0.0015	0.2011	0.0015
Bi	0.0048	0.00084	0.0043	0.00083	0.0046	0.00085	0.0050	0.00084
Au	0.0038	0.0018	0.0030	0.0018	0.0032	0.0019	0.0041	0.0019
Zn	0.0091	0.0041	0.0112	0.0041	0.0084	0.0041	0.0115	0.0041

Данные РФА проб, отобранных с анода меди № 803

Анализ данных табл. 2 позволяет сделать следующие выводы. Ни в одной пробе в виде стружки РФА не выявлены содержания железа – это указывает на то, что поверхности проб в виде цилиндров заражены соединениями железа. Присутствует неоднородность химического состава проб анодной меди (как в виде цилиндров, так и в виде стружки). Погрешность РФА на золото и цинк остается высокой.

По результатам проведенных исследований можно сделать уверенный вывод о том, что EDXRF спектрометр РЛП-21 (ЛА) может быть применим в геологии, в частности, для РФА рудных проявлений, включая отдельные зерна минералов.

Литература

Ефименко О. С., Ефименко С. А., Диханов Е. Н. Рентгенофлуоресцетный спектрометр РЛП-21Т (ЛА) для локального анализа руд и металлов // Минералы: строение, свойства, методы исследований. Мат. VII всерос. молодеж. научн. конф. Екатеринбург: ИГГ УрО РАН, 2015а. С. 34–35.

Ефименко О. С., Диханов Е. Н., Ефименко С. А. К вопросу анализа образцов анодной меди на рентгенофлуоресцентном спектрометре РЛП – 21Т (ЛА) // Структура, вещество, история литосферы Тимано-Североуральского сегмента. Мат. 24-й научн. конф. Сыктывкар: Геопринт, 2015б. С. 64–67.

Ефименко О. С., Диханов Е. Н., Ефименко С. А. О возможности анализа образцов анодной меди с помощью рентгенофлуоресцентного спектрометра // Проблемы освоения недр в XXI веке глазами молодых. Мат. 12 междунар. школы молодых ученых и специалистов. М.: ИПКОН РАН, 2015в. С. 153–157.

М. С. Глухов Казанский (Приволжский) федеральный университет, г. Казань gluhov.mixail2015@yandex.ru

Томографические и микрозондовые исследования внутреннего строения магнетитовых микросфер (научный руководитель Р. Х. Сунгатуллин)

Исследование магнетитовых микросфер (размером до 1 мм) связано с большим интересом изучения их генезиса, влияния земных и космических процессов на биотические кризисы в геологической истории, перспективностью получения дополнительного метода корреляции разнофациальных толщ глобального, регионального и местного масштабов. Ранее нами изучались морфология и химические особенности поверхности микросфер из каменноугольных пород Предуральского прогиба и Прикаспийской впадины [Глухов, Сунгатуллин, 2015; Сунгатуллин и др., 2014; 2015]. В настоящее время, для понимания генезиса микросфер, важным является изучение их сложного и разнообразного внутреннего строения.

Ранее в осадочных породах Предуральского прогиба были обнаружены целые и полые микросферы, с толщиной магнетитовой корки до половины радиуса (рис. 1). У полых микросфер корочка представлена магнетитом, а во внутренней части в незначительном количестве присутствуют Si, Al, Mg, Ca, K [Глухов и др., 2015].