Ф. П. Леснов¹, А. И. Чернышов², Е. Е. Пугачева³ ¹– Институт геологии и минералогии СО РАН, г. Новосибирск lesnovfp@list.ru ²– Томский государственный университет, г. Томск, ³– Томский политехнический, университет, г. Томск

Геохимия редких и редкоземельных элементов в породах Шаманского ультрамафитового массива (Восточное Забайкалье)

Крупнейший в Восточном Забайкалье Шаманский ультрамафитовый массив, входящий в состав восточного фланга Байкало-Муйского офиолитового пояса совместно с Парамским массивом и несколькими более мелкими телами, к настоящему времени слабо изучен современными геохимическими методами. Массив расположен на правобережье р. Витим. Его линзовидное в плане тело вытянуто в север-северозападном направлении на 25 км при максимальной ширине около 6 км. Общая площадь выходов массива составляет около 110 км². Геология, петрография и некоторые другие особенности строения и состава этого массива в разное время изучались Г. А. Кибановым, Э. Л. Прудовским, М. И. Грудининым, Е. Е. Зеленским, К. К. Анашкиной, К. Ш. Шагжиевым, Е. Е. Пугачевой, А. И. Чернышовым, А. А. Цыганковым, Д. А. Орсоевым, И. Ю. Лоскутовым, В. М. Асосковым, Ф. П. Лесновым.

Шаманский массив в рельефе представлен удлиненной возвышенностью, которая является одним из отрогов Южно-Муйского хребта. В массиве преобладают серпентинизированные гарцбургиты при подчиненном количестве неравномерно серпентинизированных дунитов, залегающих с постепенными переходами среди гарцбургитов в виде перемежающихся полос и линзовидных обособлений.

При геохимических исследованиях, проведенных в Аналитическом центре ИГМ СО РАН (г. Новосибирск), использована коллекция из 20 образцов дунитов и гарцбургитов, отобранных на разных участках массива. Редкие и редкоземельные элементы в породах определялись масс-спектрометрическм методом с индуктивно связанной плазмой и лазерной абляцией с применением масс-спектрометра «Element» (Finnigan MAT, Германия) в комплексе с лазерной приставкой UV Laser Probe (лазер Nd:YAG λ = 266 нм, Finnigan MAT, Германия) (аналитик С. В. Палесский). Для анализов использованы сплавленные в стекло порошковые пробы пород. В качестве образца сравнения использовалось стекло NIST-612 (USGS).

Ультрамафиты массива характеризуются относительно повышенными содержаниями Zr и Hf (табл. 1, 2). В дунитах содержание Zr составляет 15.9–163 г/т, в гарцбургитах – 8.0–158 г/т. Содержание Hf в дунитах составляет 0.20–3.8 г/т, в гарцбургитах – 0.17–3.4 г/т. Мультиэлементные спектры распределения хондрит-нормированных средних содержаний элементов-примесей в дунитах и гарцбургитах массива осложнены интенсивными положительными аномалиями Zr и Hf, причем значения параметра Zr/Hf в дунитах и гарцбургитах изменяются в интервале 40–48.7. Между содержаниями Zr и Hf в дунитах и гарцбургитах массива наблюдается прямая зависимость.

Главным концентратором Zr и Hf, очевидно, является акцессорный циркон, причем количество его зерен в ультрамафитах массива относительно высокое. Это подтверждается тем, что при минералогическом анализе тяжелой фракции сборной пробы образцов ультрамафитов, отобранных на разных участках массива весом около 6 кг, было выделено порядка 10 зерен циркона размером в несколько десятков микрон.

таолица т	Т	а	б	Л	И	Ц	а	1
-----------	---	---	---	---	---	---	---	---

Содержание редкоземельных и редких элементов в дунитах Шаманского массива, г/т

Эле-	Номера образцов												
менты	Ш-1/3	Ш-1/4	III-2/2	Ш-4/1	Ш-5/3	III-6/1	Ш-24/2	Ш-27/1	Ш-33/6	п.о.			
La	0.055	0.012	0.26	0.030	0.048	0.23	0.029	0.055	0.12	0.01			
Ce	0.13	0.035	0.59	0.065	0.10	0.51	0.077	0.14	0.27	0.02			
Pr	0.014	0.004	0.059	0.007	0.018	0.037	0.008	0.013	0.030	0.002			
Nd	0.056	0.024	0.30	0.031	0.050	0.15	0.043	0.077	0.014	0.003			
Sm	0.012	0.008	0.088	0.010	0.022	0.024	0.010	0.023	0.041	0.002			
Eu	0.003	0.002	0.022	0.003	0.005	0.006	0.004	0.006	0.011	0.001			
Gd	0.015	0.009	0.066	0.010	0.021	0.021	0.009	0.021	0.021	0.007			
Tb	< 0.001	< 0.001	0.008	0.002	< 0.001	0.003	0.002	0.003	0.003	0.001			
Dy	0.017	0.009	0.048	0.025	0.018	0.027	0.012	0.022	0.023	0.001			
Ho	0.003	< 0.001	0.011	0.007	0.005	0.006	0.003	0.009	0.005	0.001			
Er	0.013	0.007	0.038	0.023	0.015	0.030	0.010	0.048	0.020	0.006			
Tm	0.002	0.001	0.006	0.004	0.003	0.005	0.002	0.009	0.003	0.001			
Yb	0.013	0.005	0.040	0.020	0.014	0.030	0.010	0.079	0.017	0.001			
Lu	0.002	< 0.001	0.007	0.004	0.002	0.005	0.002	0.012	0.002	0.001			
Сумма	0.444	0.119	1.543	0.241	0.322	1.084	0.221	0.517	0.580				
(La/Yb)n	2.80	1.60	4.44	1.01	2.24	5.23	1.95	0.47	4.78				
(Eu/Eu*)n	0.71	0.80	0.84	0.93	0.77	0.81	1.18	0.84	1.06				
Ca	1857	1674	1961	2157	2012	5646	2430	4503	1730	300			
Sc	< 0.1	< 0.1	< 0.1	1.91	< 0.1	1.30	< 0.1	3.7	< 0.1	0.1			
Ti	<2.0	<2.0	128	37	14	20	4.6	46	62	2			
V	8.4	4.0	9.8	24	9.5	35	8.8	34	10.0	0.5			
Cr	1106	737	1204	1932	2087	2461	740	1901	1812	0.4			
Mn	394	222	479	569	535	766	232	585	485	1			
Co	44	29	59	68	59	81	30	71	57	0.05			
Ni	885	600	1204	1305	1147	1573	610	1388	1106	1			
Cu	4.0	2.8	7.5	6.4	8.4	14.8	1.0	4.2	6.0	1			
Zn	21	39	26	30	55	54	30	64	67	2			
Ga	0.31	0.24	0.49	0.68	0.35	0.93	0.39	1.03	0.34	0.20			
Rb	0.32	0.23	0.61	0.57	0.51	0.66	0.22	0.58	0.40	0.1			
Sr	1.49	0.72	1.60	1.18	1.26	2.1	1.48	6.8	1.91	0.5			
Y	0.14	0.078	0.38	0.24	0.10	0.17	0.11	0.30	0.23	0.01			
Zr	45	19.1	60	28	51	163	15.9	9.0	160	0.1			
Nb	0.012	0.012	0.28	0.033	0.039	0.031	0.01	0.026	0.11	0.01			
Cs	1.96	1.21	2.50	3.3	2.7	3.5	1.37	3.5	2.2	0.1			
Ba	3.3	0.98	2.7	1.86	3.5	12.4	1.94	1.88	2.5	0.5			
Hf	1.05	0.41	1.38	0.60	1.22	3.7	0.34	0.20	3.8	0.002			
Та	0.003	0.004	0.024	0.007	0.004	0.004	0.003	0.004	0.013	0.001			
Pb	0.51	0.36	0.82	1.24	0.66	1.01	0.39	0.96	0.80	0.1			
Th	0.018	0.012	0.060	0.01	0.021	0.067	0.01	0.17	0.040	0.01			
U	0.014	0.005	0.018	0.005	0.005	0.01	0.011	0.007	0.014	0.002			

Примечание. Здесь и табл. 2 п.о. – предел обнаружения.

Таблица 2

Содержание редкоземельных и редких элементов в гарцбургитах Шаманского массива, г/т

	Номера образцов											
Эле мен- ты	III-1/5	III-4/3	III-5/4	III-10/4	W-17/6А	III-17/65	III-23/1	III-29/4	III-41/7	III-42/2	III-43/6	П.О.
La	0.24	0.045	0.16	0.064	0.30	0.048	0.038	0.19	0.61	0.13	0.14	0.01
Ce	0.34	0.091	0.27	0.13	0.33	0.11	0.83	0.22	0.98	0.24	0.25	0.02
Pr	0.026	0.009	0.029	0.019	0.023	0.012	0.008	0.023	0.13	0.023	0.015	0.002
Nd	0.11	0.050	0.13	0.064	0.10	0.046	0.045	0.12	0.49	0.11	0.070	0.003
Sm	0.033	0.013	0.039	0.026	0.032	0.016	0.014	0.035	0.11	0.029	0.015	0.002
Eu	0.009	0.005	0.010	0.009	0.009	0.005	0.006	0.011	0.034	0.007	0.007	0.001
Gd	0.035	0.022	0.020	0.018	0.029	0.010	0.013	0.029	0.12	0.024	0.019	0.007
Tb	0.006	0.003	< 0.001	< 0.001	0.004	0.002	< 0.001	< 0.001	0.018	< 0.001	0.002	0.001
Dy	0.049	0.030	0.022	0.018	0.023	0.009	0.015	0.031	0.13	0.018	0.016	0.001
Но	0.014	0.007	0.006	0.004	0.006	0.002	0.003	0.009	0.040	0.004	0.004	0.001
Er	0.058	0.025	0.042	0.019	0.026	0.010	0.015	0.042	0.14	0.021	0.021	0.006
Tm	0.011	0.004	0.010	0.003	0.004	0.002	0.002	0.006	0.026	0.005	0.004	0.001
Yb	0.087	0.024	0.071	0.016	0.027	0.012	0.016	0.046	0.16	0.028	0.029	0.001
Lu	0.014	0.003	0.011	0.002	0.004	0.002	0.003	0.005	0.021	0.006	0.004	0.001
Сумма	1.032	0.331	0.821	0.393	0.917	0.286	1.009	0.768	3.009	0.646	0.596	
(La/Yb)	2.46	1.24	1.50	2.69	7.50	2.64	1.55	2.83	2.57	3.03	3.18	
(Eu/Eu*)	0.85	0.96	0.96	1.20	0.90	1.16	1.28	1.00	0.88	0.79	1.24	
Ca	13722	2716	8290	3859	3431	2501	3216	5074	6718	3716	4717	300
Sc	9.1	< 0.1	< 0.1	< 0.1	0.71	1.17	< 0.1	< 0.1	1.71	4.2	1.10	0.1
Ti	45	26	24	10	18.4	11.3	17.2	21	221	11.5	10.8	2.0
V	47	24	33	18.8	28	21	16.4	33	43	32	26	0.5
Cr	2677	2063	2223	1039	2956	1910	1251	3491	2981	2157	2039	0.4
Mn	954	229	664	661	668	626	453	682	832	824	798	1.0
Co	90	42	80	66	68	62	52	74	90	80	84	0.05
Ni	1634	921	1609	1230	1196	1085	1031	1400	1686	1448	1591	1.0
Cu	15.2	51	6.2	2.4	8.9	11.4	7.7	12.6	18.8	4.6	4.4	1.0
Zn	43	26	38	28	44	28	92	57	75	40	35	2.0
Ga	0.99	0.65	0.98	0.54	0.50	0.45	0.54	0.84	1.25	0.68	0.65	0.20
Rb	0.87	0.45	0.89	0.58	0.63	0.63	0.48	0.58	1.38	0.65	0.63	0.1
Sr	2.0	0.86	1.81	2.1	1.38	0.86	1.88	2.7	3.9	3.3	2.2	0.5
Y	0.57	0.21	0.28	0.26	0.20	0.089	0.15	0.19	1.29	0.16	0.29	0.01
Zr	62	8.0	10.0	38	37	13.8	19.6	25	158	40	54	0.1
Nb	0.037	0.030	0.027	0.027	0.025	0.027	0.033	0.035	0.32	0.023	0.035	0.01
Cs	4.0	2.3	4.1	2.8	2.8	2.8	2.5	3.5	4.3	3.4	3.4	0.1
Ba	4.1	1.97	3.7	2.5	4.8	2.1	2.1	4.7	11.2	6.7	3.6	0.5
Hf	1.35	0.17	0.22	0.82	0.76	0.30	0.49	0.56	3.4	0.90	1.22	0.002
Та	0.004	0.001	0.002	0.002	< 0.001	0.002	0.002	0.005	0.029	0.004	0.007	0.001
Pb	1.21	0.49	1.02	0.86	0.70	0.65	0.90	1.28	1.61	1.18	1.36	0.1
Th	0.064	0.013	0.010	0.012	0.046	0.011	0.015	0.012	0.27	0.028	0.022	0.01
U	0.014	0.055	0.009	0.002	0.006	0.009	0.002	0.008	0.061	0.006	0.037	0.002

Рис. Спектры распределения РЗЭ в дунитах (а) и гарцбургитах (б) Шаманского массива.

Породы массива характеризуются низкими содержаниями РЗЭ, имеющими неравномерное распределение: 0.12–1.54 и 0.29–3.01 г/т в дунитах и гарцбургитах, соответственно. Согласно расчетам, средние суммарные содержания РЗЭ составляют 0.89 и 1.8 г/т в реститогенных дунитах (n = 45) и гарцбургитах (n = 114), соответственно [Леснов, 2007]. Спектры распределения хондрит-нормированных содержаний РЗЭ в дунитах и гарцбургитах Шаманского массива имеют U-образную конфигурацию, обусловленную повышенными концентрациями ЛРЗЭ относительно средних элементов, и заметным увеличением концентраций в интервале от средних к тяжелым элементам (рис.).

Значения параметра (La/Yb)n в образцах ультрамафитов превышают единицу: 1.01–5.23 и 1.50–7.50 в дунитах и гарцбургитах, соответственно. Значения параметра (Eu/Eu*)n составляют 0.77–1.28 при преобладании значений <1. Обогащенность легкими РЗЭ относительно средних элементов и обусловленная этим дугообразно изогнутая вниз конфигурация их спектров наблюдались также во многих образцах ультрамафитов из ряда других мафит-ультрамафитовых массивов, входящих в состав некоторых офиолитовых ассоциаций. Подобное обогащение ультрамафитов легкими РЗЭ противоречит представлениям об их образовании в качестве реститов, т.е. тугоплавкого остатка при частичном плавлении верхнемантийных субстратов. По нашим данным, аномальное обогащение ультрамафитов и их минералов из мафит-ультрамафитовых массивов, а также из глубинных ксенолитов легкими РЗЭ обусловлено привносом этих примесей в породы в процессе инфильтрации обогащенных ими эпигенетических флюидов, генетически связанных с более поздними интрузивами основного или кислого состава, а в случае с глубинными ксенолитами ультрамафитов – с переносившими их базальтовыми расплавами [Леснов, 2007].

Таким образом, концентрации ЛРЗЭ в ультрамафитах, которые фиксируются по результатам анализов их валовых проб, не вполне адекватно отражают уровень накопления этих элементов-примесей, который соответствовал их изначальным содержаниям в ультрамафитах, образовавшихся в качестве рестита. Очевидно, что первичному (верхнемантийному) уровню накопления РЗЭ в реститах в наибольшей мере могут соответствовать содержания более совместимых ТРЗЭ, в первую очередь, Yb, содержания которого в дунитах и гарцбургитах Шаманского массива составили 0.005–0.079 и 0.012–0.16 г/т, соответственно. Более корректные данные о первичном РЗЭ составе верхнемантийных ультрамафитовых реститов могут быть получены, если предназначенные для анализа методом ICP-MS навески проб предварительно будут подвергнуты выщелачиванию в разбавленном растворе соляной кислоты.

Литература

Леснов Ф. П. Петрология полигенных мафит-ультрамафитовых массивов Восточно-Сахалинской офиолитовой ассоциации. Новосибирск: ГЕО, 2015. 240 с.

> *М. А. П. Пинхейро^{1, 2}, Ф. П. Леснов²* ¹ – Бразильская геологическая служба, г. Белу Оризонте, Бразилия marcopiacentini@gmail.com ² – Институт геологии и минералогии СО РАН, г. Новосибирск

Геохимия оливинов из пород ультрамафитового массива Розета (кратон Сан Франциско, юго-восточная Бразилия)

Ультрамафитовый массив Розета находится вблизи гг. Арантина и Либердаде (штат Минас Жераис, юго-восточная Бразилия) и структурно приурочен к кратону Сан Франциско [Paciullo et al., 2003]. Он залегает среди протерозойских метаморфических пород и обнажается на площади около 4 км², значительная часть которой покрыта корой выветривания. Массив сложен лерцолитами, клинопироксенсодержащими и безклинопироксеновыми шпинелевыми гарцбургитами, серпентинитами, реже – оливиновыми вебстеритами, а также жилообразными оливин-ортопироксеновыми метасоматитами с зеленой шпинелью, условно названными «гарцбургитами». Около 60 анализов зерен оливина из шести образцов массива было проанализировано рентгеноспектральным методом на микроанализаторе JEOL JXA-8100 (Аналитический центр ИГМ СО РАН, г. Новосибирск, аналитик В. Н. Королюк). Время измерения на пике каждой аналитической К α -линии составило 10 с, а также по 5 с в позиции фона с двух сторон от этой линии. Использовались стандартные образцы оливина (CH-1), пиропового граната (O-145), титанового стекла (GL-6) и марганцевого граната (Mn-Grt).

Содержания главных и второстепенных элементов в оливинах сильно варьируют. Средние содержания MgO в них уменьшаются в ряду от шпинелевых гарцбургитов к клинопироксенсодержащим шпинелевым гарцбургитам, лерцолитам, оливиновым вебстеритам и «гарцбургитам», содержащим зеленую шпинель (табл.). В той же последовательности увеличиваются средние содержания FeO. Содержания форстеритового компонента (Fo, % мол.) в оливинах уменьшаются в ряду от шпинелевых гарцбургитов к клинопироксенсодержащим шпинелевым гарцбургитам, лерцолитам, оливиновым вебстеритам и «гарцбургитам» с зеленой шпинелью. Интервалы вариаций значений параметра Fo в оливинах из отдельных разновидностей пород не перекрываются (рис. 1а).

Оливины из разных пород отличаются по содержаниям NiO и MnO (рис. 1a, б). Оливины из лерцолитов характеризуются аномально высокими содержаниями NiO (0.71–0.87 мас. %) по сравнению с таковыми из остальных пород. В крайне незначительных количествах (0.01–0.02 мас. %) NiO обнаружен в оливинах из «гарцбургитов»