С. Г. Суставов, С. А. Федоров Уральский государственный горный университет, г. Екатеринбург saf13d@mail.ru

Ванадаты висмута из редкометальных пегматитов Светлинского месторождения, Южный Урал

Ванадаты висмута – редкие минералы, обнаруженные на месторождениях Урала во второй половине XX века. В настоящее время известны три полиморфных модификации, отвечающие формуле BiVO₄, – клинобисванит, пухерит и дрейерит. На Урале известны только первые две модификации.

Миасс: ИМин УрО РАН, 2015

211

Первым на Урале был найден и описан клинобисванит в амазонитовом пегматите копи № 57 Ильменских гор [Поляков, 1984]. «Вокруг бисмутита, находящегося в этих же пегматитах, наблюдался ореол канареечно-желтого цвета, вызванный распределением по микротрещинам ярко-желтого минерала, в большинстве случаев представленного порошковатым агрегатом. Лазерный спектральный микроанализ этого минерала показал, что он состоит в основном из ванадия и висмута. Снятая дебаеграмма по наиболее интенсивным линиям соответствовала клинобисваниту» [Поляков, 1984].

Пухерит был установлен А. С. Таланцевым и И. Г. Демчук при изучении гранитных пегматитов Светлинского месторождения [Таланцев и др., 1990]. Встречен в желваках пегматитовых линз в виде зональных корочек, развивавшихся путем замещения бисмутита, слагающих желвак. Эти корочки всегда присутствовали только с одной стороны желвака, но не на всей его поверхности. Толщина корочек во всех случаях не превышала 0.6 мм. Рентгеноструктурный анализ показал, что в них доминирует пухерит.

Светлинское месторождение расположено в центральной части Кочкарского антиклинория в Восточно-Уральской мегазоне Южного Урала. В антиклинории выделяется несколько куполовидных гранито-гнейсовых массивов, являющихся центрами зонального метаморфизма. Среди этих массивов известны небольшие тела пегматитов и редкие жилы кварца. Здесь известно одноименное пегматитовое поле с редкометальной и самоцветной минерализацией [Кисин, 2010].

При изучении шлиховой пробы, полученной из рыхлых отложений месторождения, были выделены бурые зерна, которые изучены под бинокулярным стереоскопическим микроскопом MEC-10 и на электронном сканирующем микроскопе JSM-6390LV в лаборатории Института геологии и геохимии УрО РАН (г. Екатеринбург). Минералы определены на рентгеновском аппарате УРС-0.5 на кафедре минералогии, петрографии и геохимии Уральского государственного горного университета. Среди отобранных зерен выделены три морфологические разности: 1) тонкодисперсные налеты толщиной до 0.1 мм; 2) мелкозернистые агрегаты; 3) отдельные кристаллы и их сростки.

Тонкодисперсные налеты имеют преимущественно ярко-желтую и золотистооранжевую окраску и развиты на поверхности красновато-бурых зернистых агрегатов. Блеск, в отличие от зернистых масс и кристаллов, перламутровый. Покрываемая налетами площадь варьирует в пределах от 0.1×0.1 до 0.4×0.2 мм. Толщина их достигает от нескольких сотых (на самих зернах) до 0.1 мм (в интерстициях между ними).

Под электронным микроскопом у тонкодисперсных налетов наблюдается блочное строение (рис. 1). Блоки состоят из радиально-лучистых индивидов и отличаются друг от друга их размерами. Некоторые блоки наклонены относительно других, из-за чего создается ложное ощущение, что индивиды имеют форму чешуек. Длина индивидов достигает 35 мкм. Величина блоков составляет от 35×50 до 80×70 мкм. Между блоками наблюдаются зоны дробления. В последних обломки имеют изометричную форму и размеры от десятых долей до 10×6 мкм. Мелкие зерна постепенно сменяются более крупными, величина пор между которыми увеличивается. Зоны дробления приурочены к прямолинейным трещинам, рассекающим тонкозернистую массу налета.

В некоторых случаях исходные зерна имеют радиально-пластинчатое строение (рис. 2). Таблитчатые индивиды (размером от 5×1 до 10×3 мкм) собраны в слои, закрученные вокруг центра. Приближаясь к центру, индивиды увеличиваются в размерах

Рис. 1. Агрегат с блоковым строением и слабослоистой структурой.

Рис. 2. Сферолит из тонкотаблитчатых кристаллов.

и в центральной части достигают размера более 15×5 мкм. Центр более пористый и сложен таблитчатыми индивидами размером 10×5 мкм. К периферии уменьшается величина пор между слоями и размер отдельных индивидов.

Зернистые агрегаты имеют буровато-оранжевые, красновато-бурые и темнобурые цвета. Структура мелко- и тонкозернистая, размеры зерен варьируют от нескольких сотых (у агрегатов со светлой окраской) до 0.6×0.4 мм (у темно-бурых разностей). Некоторые зерна имеют форму, близкую к бипирамидальной. Окраска отдельных зерен неравномерная, наблюдается слабая зональность: светло-желтоватобурая в центре и темная, буровато-оранжевая на периферии. Интерстиции между зернами часто заполнены тонкочешуйчатым минералом белого цвета.

Отдельные кристаллы и их сростки имеют преимущественно кремовый цвет с зеленоватым оттенком, также встречаются красновато-бурые разности. Кристаллы имеют таблитчатую, призматическую и бипирамидальную формы. Размер варьирует от 0.5 до 1.2 мм (у кремовых зерен). Часть кристаллов деформирована и покрыта трещинами. Установлено нарастание мелкого бипирамидального кристалла (150 × 80 мкм) висмутового минерала на крупный таблитчатый кристалл монацита (700 × 500 мкм).

Состав исследованных зерен приведен в таблице.

Соотношение Bi:V приблизительно одинаково – 4:1. При повышении содержания Bi и появлении примеси Fe окраска зерен становится более темной. Количество Na, K, Si и Al говорит о присутствии в зернах алюмосиликатов, предположительно K-Na слюд, которые наблюдались в виде белых чешуйчатых выделений, заполняющих интерстиции между зернами ванадата висмута. Наличие кальция говорит о присутствии гипса (в спектре сдвойникованных кристаллов, свойственных гипсу, обнаружены кальций и сера). По рентгеноструктурным данным агрегат буровато-красного цвета определен как клинобисванит, а зерна и кристаллы кремового цвета с зеленоватым оттенком соответствуют пухериту. Присутствие дрейерита остается под вопросом. Возможно, в одном случае, призматические кристаллы с поперечным сечением, близким к квадратному, могут быть отнесены к дрейериту.

Отложение пухерита и клинобисванита происходило на заключительной гидротермально-метасоматической стадии формирования пегматитовых жил. Присутствие двух полиморфов свидетельствует о том, что отложение их происходило в разное время. Разная степень сохранности кристаллов и зерен этих минералов говорит о дли-

Миасс: ИМин УрО РАН, 2015

Таблица

№ обр.	Спектр	0	Na	Al	Si	S	К	Ca	v	Fe	Bi	Сум- ма
1	Спектр 1	11.13			0.67				18.68		69.52	100
	Спектр 2	14.48		1.14	1.65				15.86	0.99	65.89	100
	Спектр 3	10.8							16.94		72.27	100
2	Спектр 4	12.84		0.53	0.77				17.22		68.64	100
	Спектр 5	11.23		1.06	1.18				18.34		68.19	100
	Спектр 6	17.41		1.31	1.95				16.83		62.5	100
3	Спектр 9	13.12	0.71		1.72				9.33	28.24	46.87	100
4	Спектр 11	15.92		0.51	0.77				15.1		67.7	100
	Спектр 12	16.49		1.37	3.16			0.37	14.48		64.14	100
5	Спектр 14	13.61			0.4				14.77		71.23	100
	Спектр 15	6.66			0.53				17.25		75.56	100
	Спектр 16	17.36		9.81	31.11		22.28		2.64	0.96	15.84	100
	Спектр 18	78.04				11.14		10.82				100

Химический состав зерен 1 и 2 групп (фаз), мас. %

Примечание. Анализы выполнены на СЭМ JSM-6390LV с ЭДС приставкой INCA X-Мах (Институт геологии и геохимии УрО РАН, г. Екатеринбург, аналитик Е. С. Шагалов).

тельности их существования. Во всех зернах сохраняется соотношение между Bi:V, и часто наблюдается слабая зональность, что говорит о кристаллизации вещества в спокойной термодинамической обстановке. Раздробленность зерен и трещины деформации на кристаллах говорят о том, что индивиды подвергались воздействию поздней тектоники.

Литература

Кисин А. Ю. Структурный контроль Светлинского пегматитового поля // Геоматериалы. 2010. С. 12–14.

Поляков В. О. Висмутовая минерализация в Ильменских горах // В сб.: Материалы по минералогии месторождений Урала. Свердловск: УНЦ АН СССР, 1984. С. 19–23.

Таланцев А. С., Демчук И. Г. Гипергенные ванадий-висмутовые минералы в гранитном пегматите из Кочкарского района на Южном Урале // Материалы к минералогии Урала. Свердловск: УрО АН СССР, 1990. С. 28–35.