Г. А. Третьяков Институт минералогии УрО РАН, г. Миасс genatret@yandex.ru

Поведение элементов при взаимодействии базальта с морской водой в гидротермальных условиях

С помощью физико-химического моделирования взаимодействия базальтового стекла и горячей морской воды оценена экстрактивная способность раствора и поведение элементов в зоне гидротермальной переработки пород над магматическим очагом в осевой зоне срединно-океанического хребта. Методические приемы и исходные параметры построения подобных моделей описаны нами ранее [Третьяков, Мелекесцева, 2011; Tret'yakov, 2013; Melekestseva et al., 2014 и др.]. В постановке данной задачи предполагается, что источником рудного вещества являются базальты, взаимодействующие с морской водой в зонах прогрева окружающих пород интрузивным теплом. Моделирование взаимодействия морской воды и базальтового стекла выполнялось в программе «Селектор» методом изменения соотношения базальт/морская вода. Мультисистема для расчетов включала 41 элемент: Ag, Al, Ar, As, Au, B, Ba, Be, Bi, Br, C, Ca, Cd, Cl, Co, Cr, Cu, F, Fe, H, Hg, I, K, Li, Mg, Mn, N, Na, Ni, O, P, Pb,

Миасс: ИМин УрО РАН, 2015

53

Rb, S, Sb, Se, Si, Sr, Te, Tl, W, Zn. Состав исходных веществ (базальтовое стекло и морская вода), использованных в расчетах, опубликован в работе [Melekestseva et al., 2014]. Расчеты выполнялись из предположения, что зона гидротермальной переработки базальтов расположена на глубине 400 м ниже морского дна [Butterfield, 2000], что соответствует глубине 2400 м и гидростатическому давлению 25 МПа, температура оценивалась в 350 °C.

Расчеты показали, что для низких значений lg(базальт/морская вода) (в дальнейшем – ξ) < –3.1, т.е. при сильной промывке базальта раствором нагретой морской воды, характерен гематит, сохраняющийся до значений $\xi - 1.72$, а выше этого соотношения в породе появляется магнетит (рис. 1а). Силикатная составляющая вторичных минеральных ассоциаций в этой области представлена хризотилом и Mg-хлоритом (Mg₅Al₂Si₃O₁₀(OH)₈) (рис. 1б). Здесь сохраняется высокий окислительновосстановительный потенциал системы, буферируемой морской водой (Eh₃₅₀ > 0.5 B), который резко падает до 0 при ξ –3.02. В породу привносятся брусит и ангидрит, последний сохраняется вплоть до ξ 0. При ξ ≈ -3 ассоциация Mg-хлорита и хризотила сменяется на тальк + амезит (рис. 1б), в свою очередь, тальк исчезает при $\xi > -1.55$. Следует отметить наличие кварца в интервале −2.66 < ξ < −1.41. При ξ −1.65 появляются вторичные силикаты: Mg-Fe-монтмориллонит, Na-плагиоклаз, актинолит, Mg-Mn-хлорит, Cr-Mg-амфибол, Fe-Mg селадонит и эпидот; происходит увеличение pH₃₅₀ от 4.2 до 5.1 и понижение Еh вплоть до значения ниже -0.3 В. Сульфиды в измененном базальте начинают массово появляться, когда ξ становится больше –1.66 (рис. 1в). Вначале появляется минерал ряда линнеит-полидимит, затем джайпурит, ряд медных минералов начинается с халькопирита и заканчивается изокубанитом, который стабилен вплоть до $\xi = 1$. При $\xi > -0.61$ стабилен сфалерит, а при $\xi > -0.58$ образуется пирит, который становится главным сульфидом в измененной породе. В малых количествах присутствуют теннантит-тетраэдрит, гринокит, самородный висмут и висмутин. Набор вторичных минералов совпадает с природными и расчетными ассоциациями измененных базальтов океанической коры [Alt et al., 1986; McCollom, Shock, 1998].

Нами оценена суммарная экстракция элементов (рис. 2а) и концентрация частиц в растворе в зависимости от соотношения базальт/морская вода (рис. 26–3). Концентрации (г/т) золота (0.002), серебра (0.023), сурьмы (0.018), таллия (0.024) и теллура (0.003) в гидротермальном растворе контролируются их содержанием в исходном базальтовом стекле, т.к. среди твердых продуктов взаимодействия нет минералов соответствующих элементов во всем интервале изменения ξ.

Серебро и золото. Для серебра преобладающими комплексами являются $AgCl_2^-$ и $AgCl_3^{2-}$, концентрации других его частиц на 2 порядка ниже (рис. 2б). Поведение золота другое: так, в области $\xi < -2$ преобладают хлоридные комплексы $AuCl_3^{2-}$ и $AuCl_2^-$. При $\xi > -2$ на первое место по концентрации выходит гидросульфидный комплекс $Au(HS)^0$, затем к нему присоединяется и $Au(HS)_2^-$, хотя его содержания остаются на 1–2 порядка ниже во всем расчетном интервале. Такое поведение комплексов золота в модельном гидротермальном растворе соответствует экспериментальным определениям форм транспорта Au [Pokrovski et al., 2009a; 2009b]. Сурьма в гидротермальном растворе переносится в виде $Sb(OH)_4^-$, таллий – $Tl(OH)^0$ и $TlCl^0$. У теллура в окислительных условиях преобладает TeO_3^{2-} , в восстановительных – Te^{2-} , в переходной области – $H_2TeO_3^0$.

Рис. 1. Графики pH, Eh и логарифмов мольных количеств минеральных фаз вторичных продуктов, возникающих при взаимодействии базальта с морской водой при температуре 350 °С и давлении 25 МПа, в зависимости от логарифма отношения базальт/морская вода (ξ).

Миасс: ИМин УрО РАН, 2015

Рис. 2. Графики логарифмов суммарных содержаний элементов в растворе (*a*) и растворимых частиц Ag (δ), Au (ϵ), As (ϵ), Cd (∂), Cu (e), Pb (\mathcal{H}), Zn (3) в гидротермальной системе

Металлогения древних и современных океанов-2015

в зависимости от логарифма соотношения базальт/морская вода при температуре 350 °C и давлении 25 МПа (см. текст).

Миасс: ИМин УрО РАН, 2015

Концентрации железа стабильны при $\xi < -3.04$ и резко возрастают в связи с падением Еh в системе (рис. 2a). Максимума (0.0035 моль/кг) они достигают при ξ –1.82, затем ступенчато снижаются до постоянного значения $\approx 2 \cdot 10^{-5}$ моль/кг. Основные компоненты FeCl₂⁰ > FeCl⁺ > Fe²⁺. Содержание никеля в растворе определяется наличием в твердых продуктах реакций силикатов и сульфидов (рис. 16, в, 2a). Вначале происходит увеличение его концентрации в растворе вплоть до ξ –2.82, пока в измененном базальте не начинают формироваться Ni-содержащие силикаты тальк и амезит (рис. 2a). Далее оно незначительно увеличивается вплоть до появления среди твердых фаз сульфидов никеля при ξ > –1.64. Основные компоненты NiO⁰ > Ni²⁺ > NiCl⁺.

Экстракция из базальта и равномерное накопление в растворе таких рудных элементов, как Bi, Cd, Co, Cu и Zn по мере увеличения параметра ξ происходит вплоть до появления соответствующих сульфидных фаз в твердой породе, после чего их содержания заметно снижаются (рис. 2a, д, е, з). Содержание **висмута** в растворе увеличиваются до $1.16 \cdot 10^{-8}$ моль/кг при ξ –0.45, когда в измененной породе появляется самородный висмут, затем оно резко понижается. Основные компоненты $HBiO_2^0$ > BiO_2^- > BiO^+ . Поведение **кадмия** аналогично висмуту (рис. 2д). Основные компоненты в растворе $CdCl_2^0$ > $CdCl_3^-$ > $CdCl^+$. **Кобальт, медь** и **цинк** накапливаются в растворе до появления твердых фаз в продуктах реакции (Co = $7.82 \cdot 10^{-6}$, Cu = $5.34 \cdot 10^{-5}$, Zn = $2.94 \cdot 10^{-4}$ моль/кг) – линнеита, халькопирита, блеклой руды, сфалерита (рис. 1в, 2a, 2e, 23), затем их содержания снижаются. Основные компоненты: $CoCl^+$ > Co^{2+} , хлоридные комплексы одновалентной меди – $CuCl_3^{2-}$ > $CuCl_2^-$ и цинка – ZnCl⁺ > ZnCl₂⁰ > ZnCl₃⁻.

Поведение **мышьяка** определяется наличием или отсутствием теннантита в твердой породе и Eh системы (рис. 1в, 2а). В окислительных условиях преобладает комплекс $H_2AsO_4^-(As^{5+})$, а в восстановительных – $H_3AsO_3^{0}$ (As^{3+}) (рис. 2г). Свинец при средних содержаниях в базальтовом стекле, равных 0.68 г/т, не образует самостоятельных фаз при высоких температурах во всем интервале ξ и накапливается в растворе в виде хлоридов: PbCl₃⁻, PbCl₂⁰, PbCl₄²⁻ (рис. 2ж).

Содержание **кремния** в растворе постоянно на уровне $6 \cdot 10^{-6}$ моль/кг до $\xi - 3.62$, затем оно начинает постепенно возрастать вплоть до появления кварца в породе (рис. 2a) и стабилизируется около $5 \cdot 10-4$ моль/кг. Основная частица в растворе $- \text{SiO}_2^{0}$.

Моделирование кондуктивного охлаждения полученного раствора при просачивании через пористое пространство стенки трубы «черного курильщика» показало, что твердые продукты существенно зависят от температуры и от соотношения базальт/морская вода в зоне реакции. По рисунку 2а можно предполагать, что трубы «черных курильщиков», обогащенные пиритом, формировались из растворов, сгенерированных при $-3 < \xi < -1.7$, обогащенные медью – при $-1.7 < \xi < -1.4$, цинком $-1.2 < \xi < -0.6$. Понятно, что границы интервалов несколько условны, и зависят от конкретных содержаний элементов в породах, вовлекаемых в гидротермальную переработку.

Исследования поддержаны грантом РФФИ № 14–05–00630.

Литература

Третьяков Г. А., Мелекесцева И. Ю. Барит-пиритовые руды гидротермального поля Семенов-1, 13°31.13′ с.ш. (Срединно-Атлантический хребет): физико-химическое моделирование

условий образования // Металлогения древних и современных океанов-2011. Рудоносность осадочно-вулканогенных и гипербазитовых комплексов. Миасс: ИМин УрО РАН, 2011. С. 26–31.

Alt J. C., Honnorez J., Laverne C., Emmermann R. Hydrothermal alteration of a 1 km section through the upper oceanic crust, Deep Sea Drilling Project hole 504B: Mineralogy, chemistry, and evolution of seawater-basalt interactions // Journal of Geophysical Research. 1986. Vol. 91. No. B10. P. 10309–10335.

Butterfield D. A. Deep ocean hydrothermal vents // In: Encyclopedia of volcanoes. Sigurdsson H., Houghton B. F., McNutt S. R., Rymer H., Stix J. (eds). Academic Press, San Diego, California, 2000. P. 857–875.

McCollom T. M., Shock E. L. Fluid-rock interaction in the lower oceanic crust: Thermodynamic models of hydrothermal alteration // Journal of Geophysical Research. 1998. Vol. 103. No B1. P. 547–575.

Melekestseva I. Yu., Tret'yakov G. A., Nimis P. et al. Barite-rich massive sulfides from the Semenov-1 hydrothermal field (Mid-Atlantic Ridge, 13°30.87' N): Evidence for phase separation and magmatic input // Marine Geology. 2014. Vol. 349. P. 37–54.

Pokrovski G. S., Tagirov B. R., Schott J. et al. An in situ X-ray absorption spectroscopy study of gold-chloride complexing in hydrothermal fluids // Chemical Geology. 2009a. Vol. 259. P. 17–29.

Pokrovski G. S., Tagirov B. R., Schott J. et al. A new view on Au speciation in S-bearing hydrothermal fluids from in situ XAS and quantum-chemical modeling // Geochimica et Cosmochimica Acta. 2009b. Vol. 73. P. 5406–5427.

Tret'yakov G. A. Extraction of metals from the sediment by the heated seawater: A physicalchemical modeling // Oregenesis. Proceeding papers of international conference. Maslennikov V. V. et al. (eds). Miass: Inst. of Mineralogy UB RAS, 2013. P. 107–111.