И. Е. Архиреев¹, Е. П. Макагонов^{1,2}, В. А. Котляров¹¹ – Институт минералогии УрО РАН, г. Миасс

² – Южно-Уральский государственный университет, филиал в г. Миассе arhireev@ilmeny.ac.ru

Минералого-геохимические особенности метасоматитов нефритового проявления Факультетское, Южный Урал

Факультетское проявление нефритов располагается в 2.5 км на юго-запад от г. Миасса, в метагипербазитах Узункырского габбро-перидотитового пояса, отделенного с западной стороны от эффузивно-осадочных пород южной части Моховогорского блока Лысовогорским сбросо-сдвигом северо-восточного простирания. Большая часть нефритовых тел располагается на контакте метагипербазитов с дайкой монцонит-порфиритов, залегающей в метагипербазитах и простирающейся вдоль Лысовогорского сбросо-сдвига. Дайка разбита на блоки продольными и поперечными нарушениями, смещенными относительно друг друга [Архиреев и др., 2011].

Основное нефритовое тело (жила) расположено на юго-западном окончании дайки монцонит-порфиритов. Простирание жилы северо-западное, длина тела в горизонтальной проекции составляет 50 м, мощность на поверхности до 5 м. С северовосточной стороны жила контактирует с монцонит-порфиритами и сиенит-порфирами, с юго-западной – с серпентинизированными гарцбургитами. Детальное изучение разреза контакта вмещающих пород с нефритом позволило выявить следующие зоны: кварцевый монцонит-порфирит – сиенит-порфирит – клиноцозитовый монцонит-порфирит – клиноцозит-актинолитовая зона – нефрит – хлорит-амфиболовая зона – серпентинит (рис. 1).

Кварцевый монцонит-порфирит желтовато-серого цвета, массивной текстуры. Структура породы — сериально-порфировидная, основная масса микроаллотриоморфнозернистая. Вкрапленники составляют до 60 % объема породы. Главные минералы, % — полевые шпаты 70, амфиболы 30, биотит 3 и кварц 3; второстепенные — мусковит, пренит, эпидот, акцессорные — апатит, алланит, титанит, циркон, карбонат. Вкрапленники плагиоклаза таблитчатого облика размером от 3 до 0.2 мм обычно сложно сдвойникованы, соссюритизированы и альбитизированы.

Миасс: ИМин УрО РАН, 2014 203

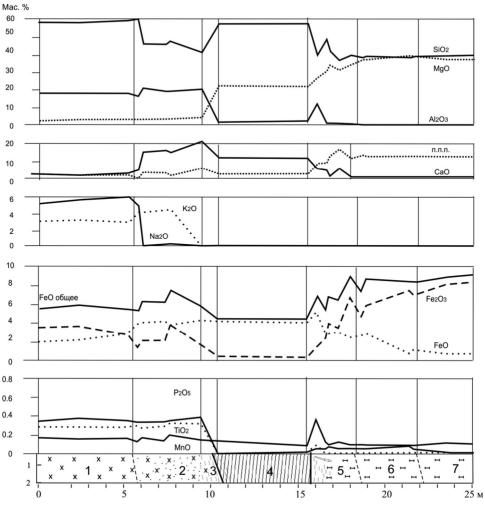


Рис. 1. График изменения химического состава пород в приконтактовых зонах нефритового тела Факультетского проявления.

1 — монцонит-порфириты, 2 — метасоматиты по монцонит-порфиритам, 3 — зона рассланцевания, 4 — нефриты, 5 — хлорит-тремолитовые породы, 6 — серпентинизированные гарцбургиты.

Первичный амфибол порфировых вкрапленников представлен ферричермакитом. Черные длиннопризматические кристаллы длиной до 3 мм часто сдвойникованы. Вторичный амфибол актинолит-ферроактинолитового состава образует гомоосевые псевдоморфозы по ферричермакиту и бахромчатые каемки вокруг его кристаллов. Реже отмечаются отдельные длиннопризматические выделения с расщепленными концами. Биотит образует псевдогексагональные волнисто изогнутые тонкотаблитчатые кристаллы бронзово-коричневого цвета размером до 4 мм в плоскости пинакоида (001). Значительная часть биотита хлоритизирована. Кварц отмечается в основной массе породы в виде ксеноморфных зерен. Пренит, цоизит и эпидот образуют редкие мелкие скопления таблитчатых зерен.

Состав минералов из метасоматитов Факультетского проявления нефритов (мас. %)

Компоненты	1	2	3	4	5	6	7	8	9
SiO ₂	41.05	40.91	41.94	52.18	53.66	39.97	39.24	57.72	42.10
TiO ₂	0.66	0.68	0.71	0.05	0.04	0.14	0.25	0.06	0.00
Al_2O_3	15.60	15.92	12.74	1.72	1.13	27.68	26.32	0.51	0.70
FeO	17.53	17.90	18.41	20.67	17.87	4.90	9.24	4.26	5.46
MnO	0.26	0.34	0.49	0.31	0.49	0.05	0.00	0.09	0.00
MgO	9.88	9.81	10.00	10.36	12.09	2.29	0.50	21.76	38.76
CaO	11.26	11.16	11.71	12.82	12.67	23.35	22.87	12.86	0.00
Na ₂ O	1.32	1.14	0.98	0.09	0.22	0.00	0.00	0.0	0.00
K ₂ O	0.79	0.91	0.97	0.22	0.15	0.00	0.00	0.09	0.00
Cr ₂ O ₃	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.16
NiO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.09
Сумма	98.35	98.75	97.92	98.42	98.31	98.38	98.49	97.35	87.26
Кол-во анализов	8	2	2	10	13	8	2	25	3

 Π р и м е ч а н и е . 1 – ферричермакит, 2 – чермакит, 3 – феррочермакит, 4 – ферроактинолит, 5 – актинолит, 6 – клиноцоизит, 7 – эпидот, 8 – нефрит, 9 – серпентинит. Анализы выполнены на сканирующем электронном микроскопе РЭММА-202М в Институте минералогии УрО РАН, аналитик В. А. Котляров.

Сиенит-порфириты резко контактируют с кварцевыми монцонит-порфиритами. Порода светло-серого цвета, массивная. Структура сериально-порфировая, основная масса микроаллотриоморфнозернистая. Вкрапленники представлены амфиболом, калиевым полевым шпатом, альбитом, достигают 3 мм и составляют до 50 % от объема породы. Основная масса состоит из калиевого и натриевого полевых шпатов. Акцессорные минералы — апатит, титанит, циркон, алланит. Первичные амфиболы представлены длиннопризматическими черными кристаллами магнезиальной роговой обманки, ферричермакита, чермакита и феррочермакита (табл., 1–3). Вторичный амфибол актинолит-ферроактинолитового состава (табл., 4, 5) часто образует полные псевдоморфозы по первичным амфиболам (рис. 2а). Клиноцоизит и эпидот отмечаются в виде отдельных ксеноморфных зерен в количестве до 1 % породы.

Резкий переход в *клиноцоизитовый монцонит-порфирит* в 5 м от нефритового тела приводит к изменению цвета породы, которая приобретает однородную светлозеленую окраску. В составе породы увеличивается содержание клиноцоизита, эпидота и актинолита, и остаются реликты пелитизированного и альбитизированного калиевого полевого шпата. Структура породы порфиробластовая. Среди акцессорных минералов распространены апатит и новообразованный титанит. Породу рассекают редкие тонкие прожилки эпидота.

В интервале 0–1.5 м от контакта с нефритами выделяется *клиноцозитактинолитовая зона*. В породе наблюдается укрупнение псевдоморфоз и новообразование индивидов актинолита на фоне бластогрануломорфного агрегата клиноцоизита с небольшим количеством эпидота (см. табл., 6, 7). Текстура породы участками

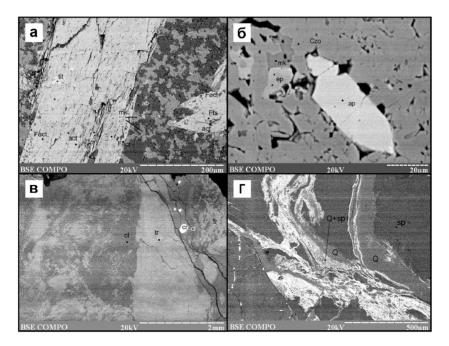


Рис. 2. Преобразование пород на контакте с нефритом: а) замещение первичных амфиболов монцонит-порфиритов вторичными амфиболами; б) выделения эпидота и клиноцоизита в метасоматите, развитые по монцонит-порфиритам; в) реликтовый хлориттремолитовый агрегат в эндоконтакте нефритового тела; г) серпентиниты окремененные.

Act – актинолит, Fact – ферроактинолит, Mgh – магнезиогастингсит, ts – чермакит, Fts – феррочермакит, tr – тремолит, ab – альбит, mk – микроклин, tit – титанит, ер – эпидот, cl – хлорит, Czo – клиноцоизит, ар – апатит, cr – хромит, sp – серпентин, Q – халцедоновидный кварц.

брекчиевидная. Часто встречаются мелкие пустоты с кристаллами эпидота и клиноцоизита. Полевые шпаты исчезают, амфибол частично замещается хлоритом. Титанит наблюдается в виде скоплений мелких зерен. Из первичных минералов только апатит не подвергся вторичными изменениями (рис. 26).

Контакт нефритового тела с вмещающими породами резкий со следами тектонического смещения (борозды и зеркала скольжения на трещинах). Нефритовая порода плотная, массивная. На поверхности образуется розоватая корка выветривания. На сколе порода имеет от светло- до темно-зеленой, иногда желтую или бурую окраску. Порода состоит из тремолита, иногда актинолита, второстепенного хлорита и акцессорных хромшпинелида, магнетита, граната, везувиана, пирита, халькопирита, никелина, кобальтина, герсдорфита, миллерита и маухерита [Архиреев др., 2008].

В зоне эндоконтакта нефритового тела с гипербазитами залегают брекчированные и разлинзованные *хлорит-амфиболовые породы* с затертыми обломками серпентинита. Окраска породы пятнистая: на голубовато-зеленом фоне хлорит-тремолитового агрегата выделяются прожилковидные обособления беловатой тремолитовой массы. Хлорит-тремолитовый агрегат сложен разно ориентированными длиннопризматическими и игольчатыми индивидами амфибола с щепковидными окончаниями и пластинчатыми выделениями талька и хлорита. Под микроскопом отмечаются буроватые теневые псевдоморфозы тонкозернистого агрегата новообра-

зованных минералов, замещающих ядра первичной петельчатой структуры серпентинита (рис. 2в). Часть хлорит-тремолитовых агрегатов имеет спутано-волокнистую текстуру. Породы рассечены сетью тонких прожилков лучистого тремолита.

На расстоянии 0.5–2.5 м от юго-западной границы нефритового тела серпентиниты разлинзованы и брекчированы. Светло-зеленые пятнистые серпентиниты перемежаются с блоками темных буровато-зеленых. В светлых участках структура сетчатая. Ячейки сложены серпофит-α-лизардитовым агрегатом с двупреломлением 0.001–0.003. В породе наблюдаются многочисленные ветвящиеся прожилки тонкошестоватого белого тремолита и светло-зеленые жилки мощностью до 1.5 см шестовато-волокнистого строения, сложенные волокнами тремолита и кальцийсодержащего энстатита. Состав хлорита меняется от клинохлора до среднего пеннина. Акцессорные минералы – хромит и магнетит.

Далее, в интервале 2.5–6.0 м серпентиниты более плотные темные буроватозеленые. Петельчатая зонально-секториальная текстура породы под микроскопом выражена более контрастно. Состав серпентинитов наиболее близок к гарцбургиту (см. табл., 8). Акцессорные минералы – хромшпинелиды и магнетит.

Химический состав пород по разрезу меняется в соответствии с минеральным составом (см. рис. 1). Главным элементом, привносимым в контактовую зону, является кальций. При кальциевом метасоматозе состав ультраосновных пород изменяется до тремолит-актинолитового, а субщелочных пород — до клиноцоизитового. Совместно с кальцием в зонах контактов отмечается некоторое увеличение содержания глинозема, что связано с увеличением количества хлорита. Из субщелочных пород выносится натрий, а из метагипербазитов — магний. Кремний перераспределяется: уменьшение его количества в эндоконтакте субщелочных пород компенсируется повышением в зоне нефритизации. Суммарное количество железа в экзоконтакте субщелочных пород незначительно увеличивается, а со стороны метагипербазитов, наоборот, уменьшается, достигая минимума в нефритах. При этом в зоне метасоматически измененных пород преобладает закисная форма железа над окисной.

Таким образом, образование нефрита сопровождается десилификацией и повышением содержания кальция как со стороны монцонит-порфиритов, так и гипербазитов.

Подобное явление наблюдалось ранее на Восточно-Саянских месторождениях нефрита. Н. А. Сутурин и Р. С. Замалетдинов [1984] предполагают, что кальциевые растворы при этом мигрируют из основных и средних пород в зону нефритизации. По нашим данным, первичным источником Са служили известняки, пододвинутые под гипербазиты в процессе субдукции (D) и во время дополнительных надвигов в коллизионный этап (С-Р) [Макагонов и др., 2013]. Эти известняки под влиянием давления и высокой температуры были сублимированы. В начальный период в процессе субдукции Са распределялся по зонам родингитизации. В поздние периоды (коллизионный этап) происходило перераспределение Са по тектоническим зонам с образованием нефрита по метагипербазитам и клиноцоизит-актинолитовых агрегатов по субщелочным породам. Углекислота, освободившаяся при разложении известняков, ушла на образование лиственитов, известных в этом же районе.

Литература

Архиреев И. Е., Масленников В. В., Макагонов Е. П., Кабанова Л. Я. Южно-Уральская нефритоносная провинция // Разведка и охрана недр. 2011. № 3. С. 17–22.

Архиреев И. Е., Масленников В. В., Макагонов Е. П. Текстурно-структурные и минера-

лого-геохимические особенности нефритов Главного Уральского Глубинного разлома (Южный Урал) // Рудоносность ультрамафит-мафитовых и карбонатитовых комплексов складчатых

Макагонов Е. П., Архиреев И. Е., Беляцкий Б. В. Дайки субщелочных пород в гипербази-

Сутурин Н. А., Замалетдинов Р. С. Нефриты. Новосибирск: Наука, 1984. 152 с.

тах северной части Узункырского пояса (Южный Урал) // Литосфера. 2013. № 4. С. 73–87.

PAH, 2008. C. 93–96.

областей. Мат. междунар, молодеж, школы-семинара, Улан-Удэ: Бурятский научный центр СО