А. Г. Гладков, С. П. Масленникова Институт минералогии УрО РАН, г. Миасс black.gnom@mail.ru

Связь термоЭДС с содержаниями Аи и Ад в сульфидных трубах мелно-пинково-колчеланных месторожлений Яман-Касы и Александринское, Ю. Урал

(научный руководитель В. В. Масленников)

Медно-цинково-колчеданные месторождения являются одними из важнейших источников золота, серебра и других ценных химических элементов. Однако, несмотря на высокие содержания серебра и золота в рудах, значительная часть этих элементов теряется в пиритовых отходах переработки руд. Потери золота при обогащении медно-цинковых колчеданных руд составляют 40-90 %. Пирит с наиболее высокими содержаниями золота остается в камерном пролукте и теряется с текущими «хвостами» фабрик [Чантурия, 2006]. Содержания Аu в некоторых генетических разновидностях пирита иногда достигают 30-50 г/т и более [Maslennikov et al., 2009].

Возникла острая необходимость отдельного извлечения золотосодержащих разновидностей пирита уже на стадии переработки руд. В последние годы делались неоднократные попытки увязать минералого-физические и технологические свойства пирита колчеланных руд. Отдельное внимание уделялось выявлению зависимости содержаний золота в пирите от термоЭДС [Джангиров, 2010]. Поскольку использовались валовые химические анализы золота (пробирный и спектральный) в колчеданных рудах и продуктах их переработки, то были выявлены лишь приблизительные зависимости, без точных корреляний типоморфизма пирита и термоЭЛС.

Определение содержаний Au и других элементов-примесей in situ стало возможным с использованием масс-спектрометрии с индуктивно связанной плазмой и лазерной абляцией [Maslennikov et al., 2009]. Появилась новая возможность разработки минералого-геохимических критериев прогнозирования путей глубокой переработки колчеданных руд применительно к различным рудно-формационным типам колчеданных месторождений. Для решения поставленной проблемы в качестве объектов исследований выбраны хорошо изученные трубы «черных» и «серых курильщиков» Яман-Касинского и Александринского медно-цинково-колчеданных месторождений [Масленникова, Масленников, 2007].

Элементы-примеси были получены методом ЛА-ИСП-МС [Масленникова, Масленников, 2007; Maslennikov et al., 2009]. Значения термоЭДС определены на установке, собранной на основе принципиальной схемы В. Г. Романова [2010] с использованием многофункционального цифрового мультиметра-регистратора. Изучено по два аншлифа с поперечных срезов гидротермальных труб каждого месторождения.

Гидротермальные трубы Яман-Касинского месторождения представлены пирит-халькопиритовой (обр. 7380-32) и кварц-марказит-халькопирит-пиритовой (обр. Ү-2001-135а) разновидностями [Масленникова, Масленников, 2007].

Пирит-халькопиритовая труба состоит из пиритовой оболочки и канала, заполненного халькопиритом [Масленникова, Масленников, 2007].

Зона А. Оболочка имеет сложное строение. В ее наружной части (подзона A1) распространены почковидные образования и корки колломорфного пирита, имеющего дырочную проводимость с убыванием значений термоЭДС по направлению от надрудной поверхности оболочки трубы к ее внутренней части. Колломорфный пирит отличается аномально высокими содержаниями большинства элементовпримесей: Au, Ag, As и Ni (табл.). С удалением от внешней стенки встречаются массивные зернистые агрегаты пирита, содержащие псевдоморфозы тонкодисперсного пирита по субгедральным кристаллам пирротина (подзона A2). Эти псевдоморфозы также имеют дырочную проводимость. Значения термоЭДС и содержания элементовпримесей, за исключением Те и As (табл.), в подзоне A2 снижаются. Минимальные концентрации всех элементов-примесей характерны для гидротермально-метасоматической подзоны A3, представленной крупнозернистым эвгедральным пиритом с повышенными концентрациями Со (табл.). Кубические кристаллы пирита имеют электронный тип проводимости (в среднем –12.5 мВ).

Зона В. Внутренняя стенка канала трубы инкрустирована халькопиритом с небольшим количеством суб- и эвгедральных кристаллов пирита. В друзовом халькопирите и эвгедральном пирите содержания большинства изученных элементовпримесей минимальны (см. табл.). Для халькопирита характерен электронный тип проводимости.

Зона С сложена халькопиритом с мелкими зернами пирита и тонкими слоями сфалерита, фактически не оказывающими влияние на тип проводимости. Также можно отметить малый разброс значений термоЭДС для халькопирита: от -54.3 до -58.4 мВ. Халькопирит в осевой части канала характеризуется снижением концентраций As и Te (см. табл.). Содержания золота и серебра в халькопирите ниже, чем в пирите.

Таблица

№ п/п	Разновидности минералов	Зона	Co	Ni	As	Au	Ag	Te	ТермоЭДС (мВ)
1	Пирит колломорфный	A1	1	39	1675	7.7	112	11	+16+29
2	Пирит апопирротиновый	A2	2.67	2.8	4456	2.5	12	38	+9+1
3	Пирит эвгедральный	A3	14	0.2	1353	1.2	10	34	-12
4	Халькопирит	В	0.05	0.1	198	0.2	1.50	47	-4449
5	Халькопирит	С	0.05	0.3	126	0.3	3.50	26	-5458
6	Пирит колломорфный	Α	115	18	2089	24	78	659	+7+21
7	Халькопирит	В	859	4.4	1520	969	3523	34480	-72.7
8	Марказит и пирит	C2	43	2.5	2122	50	466	930	+31+50
9	Пирит субгедральный	Α	2.7	69	737	0.8	14	162	+9+5
10	Пирит эвгедральный	В	1.3	48	561	1.50	24	88	-21+10
11	Пирит субгедральный	А	1.7	5.3	624	0.3	22	6	+11+36
12	Халькопирит	В	0.02	0.03	16	0.4	9.20	0.41	-4058

Средние содержания элементов-примесей (г/т) в сульфидах палеогидротермальных труб по данным ЛА-ИСП-МС

Примечание. 1–8 – месторождение Яман-Касы: 1–5 – пирит-халькопиритовая труба (обр. 7380–32); 6–8 – кварц-марказит-халькопирит-пиритовая труба (обр. Y-2001-135а); 9–12 – Александринское месторождение: 9–10 – борнит-пирит-халькопирит-сфалеритовая труба (обр. Al-1); 11, 12 – сфалерит-халькопиритовая труба (обр. A-2). ЛА-ИСП-МС анализы выполнены В. В. Масленниковым и С. П. Масленниковой в Центре по изучению рудных месторождений (Университет Тасмании, Австралия).

Кварц-марказит-халькопирит-пиритовая труба также имеет три зоны. Отличием является обилие марказита и кварца в оболочке и осевом канале трубы [Масленникова, Масленников, 2007].

Зона А. Оболочка трубы образована колломорфными и массивными агрегатами пирита, сросшимися с марказитом. Пирит имеет *p*-тип проводимости и небольшие по модулю значения термоЭДС. Повышенные содержания большинства элементов-примесей также, как и значения термоЭДС, снижаются при переходе колломорфного ламинарного пирита в почковидный и эвгедральный (см. табл.).

Зона В. Внутренняя стенка канала трубы инкрустирована халькопиритом с многочисленными включениями сильванита, колорадоита, алтаита, штютцита, фробергита. Халькопирит имеет минимальные значения термоЭДС среди исследованных образцов: до –72.7 мВ. Эта зона отличается аномально высокими содержаниями Au, Ag, Co, Te (см. табл.). Высокие концентрации этих элементов связаны с присутствием микровключений соответствующих теллуридов, в некоторых случаях частично замещенных мышьяковыми сульфосолями Cu и Ag.

Зона С. Пирит-марказит-кварцевый канал сложен срастаниями субгедральных кристаллов пирита и марказита, имеющими *p*-тип проводимости с малым разбросом значений (см. табл.).

Трубы Александринского месторождения отличаются тем, что не содержат колломорфного пирита. Среди разновидностей можно выделить только кристаллический пирит разной степени идиоморфности.

Борнит-пирит-халькопирит-сфалеритовая труба (обр. Al-1).

Зона А. Оболочка трубы сложена сфалеритом с эмульсионной вкрапленностью халькопирита. Здесь же встречается эвгедральный пирит, ядра которого иногда частично замещены борнитом с образованием «атолловых» структур. Для пирита характерен смешанный тип проводимости. Значения термоЭДС в пирите снижаются по мере приближения к внутренней части оболочки трубы: от +8.6 до +5.5 мВ. Кристаллы пирита обогащены Ni, Te и As. Содержание Со на порядок меньше концентраций Ni (см. табл.).

Зона В. Халькопирит имеет стабильно низкие значения: от –29.4 до –57.19 мВ. Пирит отличается смешанным типом проводимости со значениями от –21.0 до +10.4 мВ. Повышенные содержания Au, Ag, Te, Ni (при сниженном на порядок содержании Co) характерны для эвгедрального пирита, рассеянного по всему халько-пиритовому слою.

Зона С. Осевая часть канала заполнена сфалеритом, в котором встречается вкрапленность пирита, халькопирита и борнита. Халькопирит имеет электронную проводимость со значениями термоЭДС от –20.4 до –36.8 мВ, что по модулю меньше показателей чистого халькопирита зоны В. Сфалерит меняет тип проводимости на электронный, по-видимому, из-за влияния халькопирита и имеет большие по модулю значения (до –2.4 мВ) по сравнению с зоной А.

Сфалерит-халькопиритовая труба (обр. А–2) находится в массе, образованной обломками пирита, имеющего смешанный тип проводимости со значениями термоЭДС от –11.4 до +36.5 мВ.

Зона А. Оболочка трубы образована сфалеритом с вкрапленностью суб- и эвгедрального пирита и псевдоморфоз халькопирита по нему. Пирит в данной зоне преимущественно кристаллический с различной степенью идиоморфности и имеет дырочный тип проводимости со значениями от +11.4 до +35.8 мВ, при низких содержаниях большинства элементов-примесей (см. табл.).

Зона В. Стенка канала трубы инкрустирована массивным халькопиритом, ближе к каналу окаймленным кристаллами сфалерита и реликтами субгедрального пирита. Халькопирит сохраняет, как и в других образцах, тенденцию к увеличению модуля значений от периферии к центру трубы: от –39.7 до –57.5 мВ. В этом же направлении в халькопирите уменьшается содержание Со, Ni, Te, Au, Ag (см. табл.).

Зона С. Осевая часть канала трубы заполнена сфалеритом с электронной проводимостью (в среднем, -15.2 мВ). Халькопирит имеет значения термоЭДС -50 мВ и ниже. Сфалерит содержит повышенные концентрации Au, Ag, As и Te.

Таким образом, в трубах месторождения Яман-Касы наблюдается прямая зависимость значений термоЭДС пирита от содержаний Au и Ag. Для пирита труб Александринского месторождения эта зависимость нарушается. Известна зависимость флотационной способности минералов от их полупроводниковых свойств [Чантурия, 2006]. Очевидно, что при флотационном процессе халькопирит, обладающий электронной проводимостью и поступающий в медный концентрат, будет отделяться от золотоносного пирита *p*-типа, который будет оставаться в «хвостах». В связи с этим, можно предположить, что реальная возможность отделения золотоносного пирита *p*типа от обедненного золотом и серебром пирита *n*-типа упущена при переработке руд месторождения Яман-Касы. Извлечение золота в определенные пиритовые концентраты на Александринском месторождении пока видится проблематичным. Выявление связи содержаний элементов-примесей от электрофизических свойств генетических разновидностей пирита различных рудно-формационных типов колчеданных месторождений открывает новые перспективы для более глубокой переработки руд.

Работа выполнена при финансовой поддержке УрО РАН (проект ОФИ, N 13-05-012 Недра).

Литература

Джангиров М. Ю. Параметрические критерии генетических особенностей и технологических свойств колчеданных руд месторождений Северного Кавказа и Южного Урала. Автореф. дис. ... канд. геол.-мин. наук. Ростов-на-Дону, 2010. 16 с.

Масленников В. В., Масленникова С. П. Сульфидные трубы палеозойских «черных курильщиков» (на примере Урала). Екатеринбург–Миасс: УрО РАН, 2007. 312 с.

Романов В. Г. Зональность и прогнозная оценка эндогенных месторождений на основе температурных параметров термоЭДС и электропроводности сульфидов. Автореф. дис. ... докт. геол.-мин. наук. Улан-Удэ, 2010. 48 с.

Чантурия Е. Л. Флотационное фракционирование золотосодержащего пирита на продукты различного качества // Горный информационно-аналитический бюллетень. 2006. № 5. С. 339–346.

Maslennikov V. V., Maslennikova S. P., Large R. R., Danyushevsky L. V. Study of trace element zonation in vent chimneys from the Silurian Yaman-Kasy VHMS (the Southern Urals, Russia) using laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) // Economic Geology. 2009. Vol. 104. № 8. P. 1111–1141.