тить, что в метасоматически измененных кимберлитах существенно возрастает содержание Al_2O_3 .

Таким образом, выявленные петрохимические отличия кимберлитовых пород в изученных полях развития, вероятно, отражают их специфику образования, обусловленную процессами дифференциации мантийных источников. Сопоставление фигуративных точек исследуемых пород на диаграммах (SiO₂/MgO)–(MgO/FeO*) и (Al₂O₃+Na₂O+K₂O)–(MgO/FeO*) (рис. в, г) с полями развития кимберлитовых пород из других районов Якутии показало, что они по своему составу отвечают кимпикритам и альпикритам [Лапин и др., 2007].

В процессе дальнейших исследований предполагается более детальное петрографическое изучение кимберлитовых пород Якутии из различных районов с целью выявления их петроструктурных особенностей. Предполагается также установить петрогеохимическую специализацию различных по составу пород.

Литература

Атлас текстур и структур кимберлитовых пород / В. П. Корнилова, К. Н. Никишов, В. В. Ковальский, Г. В. Зольников. М.: Наука, 1983. 161 с.

Лапин А. В., Толстов А. В., Василенко В. Б. Петрогеохимические особенности кимберлитов Средне-Мархинского района в связи с проблемой геохимической неоднородности кимберлитов // Геохимия, 2007. № 12. С. 1292–1304.

Ч. К. Ойдуп¹, Ф. П. Леснов², В. Н. Королюк² ¹ – Тувинский институт комплексного освоения природных ресурсов СО РАН, г. Кызыл oydup_ch@mail.ru ² – Институт геологии и минералогии СО РАН, г. Новосибирск

Распределение главных компонентов в цирконах из пород ультрамафит-мафитового комплекса Юго-Западной Тувы

Данные об общем химическом составе цирконов, а также о распределении в них элементов-примесей, в том числе редкоземельных элементов (РЗЭ), все чаще используются в качестве индикаторов при систематике магматических пород, при их изотопном датировании U-Pb методом, а также при решении задач петрологии и металлогении, в том числе касающихся мафит-ультрамафитовых комплексов [Абовян, 1981; Велинский и др., 1991; Леснов, 2005].

Согласно наблюдениям, цирконы способны кристаллизоваться как на ранних, так и на поздних стадиях магматического процесса. Например, в ультрамафитмафитовом комплексе Среднего Побужья (Украина) были выделены ранний («реликтовый») и поздний («наложенный») типы цирконов, причем последний обычно встречается в серпентинитах и пироксенитах [Драгомирецкий, 2002]. О позднемагматическом образовании циркона свидетельствуют его эпитаксические каймы, обнаруженные на кристаллах ильменита в габброидах из мафитовых комплексов Канады [Morisset, Scoates, 2008]. Вместе с тем, закономерности изменения химического состава цирконов из пород мафит-ультрамафитовых комплексов, а также распределения в них элементов-примесей, включая РЗЭ, пока исследованы недостаточно [Леснов, 2005; Леснов, 2009].

В этой связи представляют интерес полученные нами данные по содержанию Zr, Hf и Si в цирконах из пород двух небольших ультрамафит-мафитовых массивов, расположенных в верховьях реки Моген-Бурен (Юго-Восточная Тува) – Бирдагского (30 км²) и Хаялыгского (7.8 км²). Массивы, входящие в состав внутриплитного раннепалеозойского ультрамафит-мафитового комплекса, сложены преобладающими лейкократовыми, реже – меланократовыми габброидами и подчиненными им ультрамафитами, включая горнблендиты [Ойдуп и др., 2006; Леснов и др., 2007; Ойдуп, Леснов, 2009]. Присутствие акцессорных цирконов установлено почти во всех пробах пород из этих массивов. В меланократовых разновидностях габброидах он встречается намного чаще. Повышенное количество циркона выявлено в анортозитах, габбропегматитах и плагиогранитах из даек, секущих породы массивов. В большинстве случаев размеры зерен минерала составляют первые десятые доли миллиметра (табл. 1).

В амфиболовых габбро циркон преимущественно представлен короткостолбчатыми кристаллами тетрагональной призмы, осложненной дипирамидами, удлиненно-призматические зерна редки. Многие из них прозрачные, полупрозрачные с коричневатым, бледно-розовым оттенком или серые, иногда бесцветные. В горнблендитах цирконы представлены очень мелкими кристаллами с розоватым оттенком, в одном случае – слегка удлиненный кристалл со сглаженными гранями.

В меланократовом габбро и габбро-пегматите выделены две разновидности кристаллов циркона: 1) сростки из двух кристаллов с хорошо выраженными пирамидами на концах, имеющие тетрагональный габитус и медовую окраску; 2) прозрачные с розоватым оттенком кристаллы тетрагонального габитуса. Из пробы плагиогранита (Бирдагский массив) выделено 170 зерен циркона для определения возраста U-Pb методом. Большинство из них имеют форму тетрагональной призмы с хорошо развитыми гранями и дипирамидами на концах; остальные – удлиненно-призматические до шестоватых с заостренными дипирамидами.

Изучение зерен циркона под растровым электронном микроскопом (LEO 1430VP, фирма Zeiss; аналитик А. Т. Титов) показало, что в большинстве случаев они не содержат каких-либо включений, хотя в некоторых из них были обнаружены единичные микровключения апатита, реже – плагиоклаза и кварца. В микротрещинах, секущих отдельные зерна циркона, обнаружены выделения хлорита и слюды. По циркону из амфиболового габбро U-Pb изотопным методом определен возраст Хаялыгского массива, который составил 447.4±1.3 млн лет (поздний ордовик) [Ойдуп и др., 2006]. Тем же методом по циркону из дайки плагиогранита, секущей габброиды, был определен близкий возраст Бирдагского массива – 450.3±4.6 млн лет.

Коллекция в количестве 31 зерна циркона (преимущественно из Хаялыгского, в меньшей мере – из Бирдагского массивов) исследована рентгеноспектральным методом на микрозонде JEOL JXA-8100 (Япония) при ускоряющем напряжении 20 кВ (аналитический центр ИГМ СО РАН, аналитик В. Н. Королюк). Пересчет измеренных интенсивностей аналитических линий в концентрации элементов выполнен методом ZAF из программного обеспечения прибора.

№№ обр.	Порода	Размеры зерен, мм	Форма	Окраска							
Хаялыгский массив											
Mx-1a	Горнблендит	0.1-0.2	Овальная, без граней	Розовая							
Mx-16	То же	0.1-0.2	То же	То же							
Mx-5a	-«-	0.15-0.2	Тетрагональные дипира- миды	Розовато-серая							
Мх-5б		0.15-0.2	То же	То же							
Mx-6a	Габбро мела- нократовое	0.1–0.15	Обломки кристаллов	Коричневая, зональная							
Mx-66	То же	0.1-0.15	То же	То же							
Mx-7		0.1 imes 0.2	Тетрагональные призмы	Розовая							
Mx-10a	Габбро амфи- боловое	0.1–0.15	Тетрагональные призмы короткостолбчатые	Сероватая							
Мх-10б	То же	0.1-0.15	То же	То же							
Mx-11a	-«-	0.1–0.2	Тетрагональные призмы и удлиненно-призмати- ческие дипирамиды	Бледно-розовая, серая, зональная							
Mx-116		0.6-1.0	То же	То же							
Mx-12a	-«-	0.15-0.2	Тетрагональные призмы	Коричневая, розовая, светло-серая							
Мх-12б		0.15-0.2	То же	То же							
Mx-13a	-«-	0.1-0.15	Призмы	Розовая, светло-серые							
Мх-13б	-«-	0.1×0.15	То же	То же							
Mx-15a	-«-	-	-«-	-«-							
Mx-156		-	-«-	-«-							
Бирдагский массив											
M- 27a	Габбро амфи-	0.1×0.4	Удлиненные дипирами-	Розовые, серые, корич-							
	боловое	0.17(0.4	дальные призмы	невые (зональные)							
М- 27б	То же	То же	То же	То же							
М- 27в			-«-	-«-							
Mx-44a	Плагиогранит	0.02–0.65	Удлиненные призмы, острые дипирамиды	Прозрачные, очень редко с розоватым оттенком							
Мх-44б	То же	То же	То же	То же							

Характеристика цирконов из пород Хаялыгского и Бирдагского массивов

Таблица 1

Проанализированные образцы минерала в большинстве своем представлены фрагментами кристаллов, выделенными при дроблении пород и отборе под бинокуляром. Почти во всех случаях микроанализ проведен в центре полированной поверхности зерна, то есть без учета его вероятной химической зональности. Из каждой пробы породы анализировалось по два зерна циркона, анализы которых обозначены буквами «а» и «б», реже – по одному или по трем зернам (табл. 2).

В целом, химический состав цирконов изменяется в сравнительно узком диапазоне. Содержание ZrO₂ варьирует в интервале 64.7–67.4 мас. %, HfO₂ – от 0.85 до 1.55 мас. %, SiO₂ – от 31.9 до 33.3 мас. %. В некоторых зернах обнаружена весьма незначительная примесь Се, Y, P, Ca, Al, Fe. Значения параметра ZrO_2/HfO_2 – от 41.9 до 78.1. Концентрации ZrO₂ и SiO₂ в изученных цирконах обычно несколько ниже, чем полученные ранее их средние оценки – 67 и 33 %, соответственно [Леснов, 2009].

№№ п/п	№№ об- разцов	SiO_2	ZrO_2	HfO_2	Сумма	ZrO ₂ /HfO ₂	Порода
1	Mx-1a	31.88	66.62	0.89	99.39	74.85	Габбро амфибо- ловое
2	Mx-16	32.32	64.83	0.86	98.01	75.74	То же
3	Mx-1b	31.97	67.16	1.03	100.16	65.20	
4	Mx-1r	32.17	67.36	1.11	100.64	60.69	
5	Mx-6	31.91	65.53	1.16	98.60	56.30	
6	Xa-3	31.92	66.93	0.98	99.83	68.30	Габбро-пегматит
7	Xa-3a	31.93	66.40	0.85	99.18	78.12	То же
8	Xa-7	32.07	66.82	0.97	99.86	68.89	Клинопироксе- нит
9	Xa-7a	31.95	66.51	0.99	99.45	67.18	То же
10	Mx-2a	33.27	65.60	0.88	99.75	74.55	Горнблендит
11	Мх-2б	32.90	65.62	1.38	99.90	47.55	То же
12	Mx-5a	33.03	65.80	1.05	99.88	62.67	-«-
13	Mx-56	33.02	65.70	1.23	99.95	53.42	-«-
14	Mx-6a	32.87	66.28	1.16	100.31	57.14	Габбро мелано- кратовое
15	Мх-6б	32.97	65.63	1.03	99.63	63.72	То же
16	Mx-7	33.31	65.56	1.05	99.92	62.44	
17	Mx-10a	33.06	66.07	1.20	100.33	55.06	Габбро амфибо- ловое
18	Мх-10б	33.09	65.41	1.44	99.94	45.42	То же
19	Mx-11a	33.20	65.66	1.25	100.11	52.53	
20	Mx-116	33.15	65.27	1.17	99.59	55.79	
21	Mx-12a	33.14	65.06	1.29	99.49	50.43	
22	Mx-126	33.25	65.15	1.27	99.67	51.30	
23	Mx-13a	32.97	65.74	1.12	99.83	58.70	-«-
24	Mx-136	33.07	65.27	1.29	99.63	50.60	-«-
25	Mx-15a	33.19	65.38	1.17	99.74	55.88	-«-
26	Mx-156	33.31	65.45	1.16	99.92	56.42	-«-
27	M-27a	32.99	65.55	1.08	99.62	60.69	-«-
28	М-27б	33.01	65.51	1.21	99.73	54.14	-«-
29	М-27в	32.93	65.30	1.21	99.44	53.97	
30	M-44a	32.79	64.74	1.31	98.84	49.42	Плагиогранит
31	М-44б	32.73	64.91	1.55	99.19	41.88	То же

Содержание главных компонентов в цирконах из пород Хаялыгского и Бирдагского массивов (мас. %)

Примечание. Массивы: 1–26 – Хаялыгский; 27–31 – Бирдагский. Номера образцов соответствуют табл. 1.

Данные о распределении ZrO_2 и HfO_2 в цирконах исследованных пород указывают на сравнительно небольшие их вариации. При этом наблюдается тенденция обратной зависимости между их концентрациями (рис.). Можно видеть, что цирконы из амфиболовых габбро представлены двумя разновидностями – с пониженным и повышенным содержанием ZrO_2 . К первой примыкают цирконы из меланократовых габбро,

Таблица 2

Рис. Соотношение содержаний ZrO₂ и HfO₂ в цирконах из пород Хаялыгского и Бирдагского ультрамафитмафитовых массивов: точки – амфиболовые габбро; треугольники – меланократовые габбро; залитые квадраты – габбро-пегматиты, крестики – клинопироксениты; незалитые квадраты – горнблендиты; звездочки – плагиограниты.

 HfO_2 при пониженном содержании ZrO_2 свойственно цирконам из плагиогранитов. Наблюдаемые различия по концентрациям ZrO_2 и HfO_2 , а также по значениям параметра ZrO_2/HfO_2 в разных зернах циркона из одной и той же пробы, вероятно, обусловлены их химической зональностью. Отметим, что изучение оптически зональных кристаллов циркона из мафит-ультрамафитовых массивов Среднего Побужья показало, что их центральные зоны обычно имеют более высокие значения ZrO_2/HfO_2 по сравнению с внешними зонами [Драгомирецкий, 2002].

Литература

Абовян С. Б. Мафит-ультрамафитовые интрузивные комплексы офиолитовых поясов Армянской ССР. Ереван: АН АрмССР, 1981. 306 с.

Велинский В. В., Банников О. Л, Пальчик Н. А., Хмельникова О. С. Акцессорные минералы в серпентинитах офиолитов // Гипербазитовые ассоциации складчатых областей. Вып. 6. Новосибирск, 1991. С. 83–99.

Драгомирецкий А. В. Особенности акцессорного циркона некоторых ультрамафит-мафитов раннего докембрия Среднего Побужья (Украинский щит) // Минералогический журнал, 2002. Т. 24. № 4. С. 70–78.

Леснов Ф. П. Закономерности распределения редкоземельных элементов в цирконах (обзор) // Петрология магматических и метаморфических комплексов. Томск: ТГУ, 2005. С. 105–111.

Леснов Ф. П. Редкоземельные элементы в ультрамафитовых и мафитовых породах и их минералах. Кн. 2. Второстепенные и акцессорные минералы. Новосибирск: «ГЕО», 2009. 250 с. (в печати).

Леснов Ф. П., Ойдуп Ч. К., Палесский С. В., Николаева И. В., Петрова Л. И. Первые данные по геохимии цирконов из габброидов Хаялыгского мафитультрамафитового массива (Юго-Западная Тува) // Состояние и освоение природных ресурсов Тувы и сопредельных регионов Центральной Азии. Геоэкология природной среды и общества. Вып. 9. Кызыл: ТувИКОПР СО РАН, 2007. С. 83–90.

Ойдуп Ч. К., Леснов Ф. П. Ультрамафит-мафитовый магматизм Юго-Западной Тувы // Геология и геофизика, 2009. (в печати).

Ойдуп Ч. К., Леснов Ф. П., Лебедев В. И. Новые данные по геологии и петрологии мафит-ультрамафитовых массивов Монгунтайгинского офиолитового пояса (Западная Тува) // Офиолиты: геология, петрология, металлогения, геодинамика. Екатеринбург: ИГГ УрО РАН, 2006. С. 218–221.

Ойдуп Ч. К., Леснов Ф. П., Козаков И. К. и др. Первые данные по изотопному возрасту мафит-ультрамафитового комплекса Юго-Западной Тувы (U-Pb метод по цирконам) // Геодинамическая эволюция литосферы Центрально-Азиатского подвижного пояса (от океана к континенту). Иркутск, 2006. Т. 2. С. 69–72.

Morisset C.-E., Scoates J. S. Origin of zircon rims around ilmenite in mafic plutonic rocks of proterozoic anorthosite suites // Canadian Mineralogist, 2008. Vol. 46. Part 2. P. 289–304.

А.В.Котляров, В.А.Симонов Институт геологии и минералогии СО РАН, г. Новосибирск simonov@uiggm.nsc.ru

Особенности формирования офиолитов Восточной и Южной Тувы

Офиолитовые ассоциации привлекают к себе самое пристальное внимание не только в связи с тем, что они являются реперами геодинамических событий формирования складчатых областей, но и потому, что с ними связаны различные типы месторождений, формировавшихся в структурах древних океанов. В этом отношении Каахемские офиолиты в Восточной Туве вызывают особый интерес, так как к структурам кембрийского Каахемского рифта приурочено Кызыл-Таштыгское колчеданное месторождение, процессы формирования которого на дне древнего морского бассейна были близки к рудообразующим системам гидротермальных полей в современных океанических областях [Зайков, 1991, 2006; Симонов и др., 1999].

На геологических схемах офиолиты Восточной и Южной Тувы образуют фактически единый изгибающийся пояс, показывая тем самым определенное единство геодинамической истории их формирования.

В результате комплексных исследований накоплен значительный объем данных по геологии, петрологии и геохимии офиолитов Восточной и Южной Тувы, что позволило авторам установить характерные особенности формирования этих палеоокеанических структур.

Офиолиты Восточной Тувы. Каахемская офиолитовая зона находится, в основном, на водоразделе между реками Каа-Хем и Бий-Хем в Восточной Туве. Как показали полевые исследования, Каахемские офиолиты обладают полным набором пород – гипербазиты, габброиды, дайковый комплекс и эффузивно-осадочные серии. Особое значение имеет впервые установленный для этих структур комплекс параллельных даек, который прямо свидетельствует о палеоспрединге.

По данным петрохимического анализа породы дайкового комплекса Каахемских офиолитов разбиваются на две основные группы. Одна располагается на диаграммах в поле базальтов задуговых бассейнов (ВАВВ) и обогащенных пород срединно-океанических хребтов типа E-MORB, а другая приурочена к границе островодужных известково-щелочных серий (IACAB) и аномально обогащенных