И. Ю. Мелекесцева Институт минералогии УрО РАН, г. Миасс melekestseva@ilmeny.ac.ru

Обзор новых гидротермальных полей с сульфидными рудами в Мировом океане (дополнение к кадастру 2004 г.)

В 2004 г. для обзора гидротермальных полей Мирового океана с рудной минерализацией был составлен кадастр, где собраны многочисленные данные по этому вопросу [Мелекесцева, 2004]. За прошедшие 5 лет в Мировом океане были открыты новые гидротермальные поля с «черными курильщиками», поэтому целью настоящей работы стало пополнение кадастра с краткой сводкой по новым рудопроявлениям (табл.). В настоящей работе также: 1) приведены данные о гидротермальных полях, открытых до 2004 г., но не учтенных в предыдущей работе (Кайрей и Эдмонд в Центрально-Индийском хребте, 2000 г., а также между 10 и 16° в.д. в юго-западном Индийском хребте, 2002 г.); 2) охарактеризованы некоторые низкотемпературные поля, имеющие собственные названия и ассоциирующие с высокотемпературными сульфидными залежами; 3) отмечена находка неактивного гидротермального поля Лост Вилладж с карбонатной минерализацией в Атлантическом океане. Поля в таблице расположены по океанам и годам их открытий, начиная с 2008 г.

Литература

Иванов В. Н., Бельтенев В. Е., Степанова Т. В., Лазарева Л. И., Самоваров М. Л. Сульфидные руды нового рудного узла 13°31' с.ш. САХ // Металлогения древних и современных океанов–2008. Рудоносные комплексы и рудные фации. Миасс: ИМин УрО РАН, 2008. С. 19–22.

Мелекесцева И. Ю., Иванов В. Н., Бельтенев В. Е., Добрецова И. Г. Кластогенные руды нового гидротермального узла 13°31' с.ш., Срединно-Атлантический хребет // Типы седиментогенеза и литогенеза и их эволюция в истории Земли. Материалы 5-го Всерос. литологич. совещ. Екатеринбург, 2008. Т. II. С. 75–78.

Bach W., Banerjee N. R., Dick H. J. B., Backer E. T. Discovery of ancient and active hydrothermal systems along the ultra-slow spreading Southwest Indian Ridge $10^{\circ}-16^{\circ}$ E // Geochemistry. Geophysics. Geosystems, 2002. 3 (7), 1044, doi:10.1029/2001GC000279.

Baumberger T., Frueh-Green G. L., Pedersen R. B. et al. Carbon and Sulphur Geochemistry of Rift Valley Sediments and Hydrothermal Fluids at the Ultra-Slow Spreading Southern Knipovich Ridge // Eos Trans. AGU, 2008. Vol. 89(53), Fall Meet. Suppl. Abstract T42B-08.

Beltenev V., Ivanov V., Rozhdestvenskaya I. et al. A new hydrothermal field at 13°30' N on the Mid-Atlantic Ridge // InterRidge Newsletter, 2007. Vol. 16. P. 9–10.

Chen Y. J., Li J. National News, China // InterRidge Newsletter, 2008. Vol. 17. P. 31-32.

Cherkashev G. A, Ashadze A. M., Gebruk A. V., Krylova E. M. New fields with manifestations of hydrothermal activity in the Logatchev area (14°N, Mid-Atlantic Ridge) // InterRidge Newsletter, 2000. Vol. 9 (2). P. 26–27.

Таблица

Гидротермальные поля, открытые с 2004 г. в Мировом Океане

N⁰	Название, субстрат, местоположение	Год	Краткое описание	Литера- турный источник
1	2	3	4	5
	·	•	Атлантический океан	•
1	Локис Касл (Locki's Castle), 73° с.ш. Базальты Пересечение хребтов Книповича и Монса	2008	Гидротермальное поле было открыто интернациональной командой исследова- телей в рейсе норвежского НИС «G.O. Sars». Поле расположено на глубине ~ 2400 м на вершине подводного вулкана и является самым северным из извест- ных в Мировом океане гидротермальных полей с «черными курильщиками». По размерам сопоставимо с полем ТАГ в Срединной Атлантике. Отмечается при- сутствие эндемичной пригидротермальной фауны, которая отлична от встречен- ной в южных широтах Атлантики. Температура излияний составляет более 300 °C, pH растворов – 5.5. Растворы обогащены водородом, метаном, сероводоро- дом и аммиаком, что указывает на взаимодействие флюида с осадками, частично покрывающими рифтовую долину.	Pedersen, 2008; Baumberge r et al., 2008
2	Зенит-Виктория, 20°07.75′ с.ш., 45°37.35′ з.д. Базальты Восточный склон риф- товой долины САХ	2008	Неактивное гидротермальное поле на базальтовом основании было открыто в 31-м рейсе российского НИС «Профессор Логачев». Руды характеризуются медной и медно-цинковой специализацией. Ресурсы рудного поля оценены в 10 млн т.	Silantyev, 2008
3	Пью де Фоль (<i>Pui des</i> <i>Folles</i>), 20°30.50′с.ш., 45°38.50′ з.д. Базальты Подводная гора САХ	2008	В 31-м рейсе российского НИС «Профессор Логачев» открыто 4 новых неактивных гидротермальных участка на поле Пью де Фоль, существенно расширивших его контуры.	Silantyev, 2008
4	Гидротермальный узел Семенов, 13°31'с.ш. Базальты, ультрамафи- ты, габбро Подводная гора САХ	2007	Гидротермальный узел, состоящий из 4-х неактивных рудопроявлений – Запад- ного, Северо-Западного, Восточного и Северо-Восточного, был открыт в 30-м рейсе российского НИС «Профессор Логачев». Рудопроявления находятся на глубинах от 2400 до 2950 м на горе, вытянутой по широте примерно на 10 км при ширине около 4.5 км. Она имеет сложное геологическое строение: с океани- ческого дна были подняты серпентинизированные перидотиты, габброиды, базаль-	Beltenev et al., 2007; Иванов и др., 2008;

1	2	3	4	5
			ты, метабазальты и плагиограниты. Рудопроявление Западное пространственно связано с серпентинизированными перидотитами, остальные – с базальтами. Руды Западного рудопроявления представлены колломорфными пористыми марказит-пиритовыми и тонкозернистыми опал-марказит-барит-пиритовыми типами. На Северо-Западном рудопроявлении драгированы тонкозернистые опал-изокубанит-халькопирит-сфалеритовые руды с высокими содержаниями золота и серебра (22–188 и 127–1787 г/т соответственно). На Восточном рудопроявлении подняты прожилково-вкрапленные марказит-пиритовые руды в гидротермально измененных базальтах. Обломочные марказит-пиритовые руды обнаружены на Северо-Восточном рудопроявлении.	Melekestse va et al., 2008; Мелекес- цева и др., 2008
5-8	Гидротермальные поля Тетл Питс (Turtle Pits), Ред Лайон (Red Lion), Уайдэуэйк (Wideawake), Камфотлес Коув (Com- fortless Cove), 4°48'ю.ш. Базальты Рифтовая долина САХ	2005-2006	Гидротермальные поля открыты международной экспедицией в рейсе M68/1 на немецком НИС «Меteor». Поле Тетл Питс находится на глубине 2990 м на фланге вулканической по- стройки и состоит из 2 холмообразных залежей, сложенных сульфидными об- ломками с многочисленными небольшими трубами «черных курильщиков» на вершине холмов. Между холмами находится крупный активный «черный ку- рильщик», названный Саусен Тауэр (<i>Southern Tower</i>). Температура флюида, замеренная на поле Тетл Питс, является самой высокой из когда-либо измерен- ных на гидротермальных полях и достигает 408.5 °C. Наблюдения газовых пу- зырей во флюиде указывают на фазовую сепарацию флюида. Поле Уайдэуэйк находится в 200 м к востоку от поля Тетл Питс и характеризу- ется истечением диффузного флюида с температурой 18 °C. Поле Ред Лайон находится в 2 км к северу от поля Тетл Питс на глубине 3050 м и характеризуется присутствием 4 активных «черных курильщиков», названных Шримп Фам (<i>Shrimp Farm</i>), Шугахэд (<i>Shugarhead</i>), Мефисто (<i>Mephisto</i>) и Тан- ненбаум (<i>Tannenbaum</i>). Температура флюида на этом гидротермальном поле варьирует от 196 до 349 °C. Поле Камфотлес Коув находится на глубине 2996 м между полями Тетл Питс и Ред Лайон. На поле установлен один 13-метровый «черный курильщик» Систер Пик (Sister Peak) с температурой 399 °C. Недалеко от черного курильщика рас- полагаются два диффузных участка с температурой истечения < 10 °C.	Kochinsky et al., 2006

1	2	3	4	5
9	Гидротермальное поле Нибелунги (Nibelungen), 8°18'ю.ш. Ультрамафиты, базаль- ты Рифтовая долина САХ	2006	Активное гидротермальное поле открыто международной экспедицией в рейсе M68/1 на немецком HUC «Меteor». Поле находится на глубине 2905 м. Его главной особенностью является то, что «черный курильщик» является кратером глубиной 4 м и диаметром до полуметра, из которого с большой скоростью струится черный дым. Этот кратер, названный Драчен Шлунд («Drachenschlund», нем.), схож с таковыми, обнаруженными на полях Логачев и Ашадзе [Cherkashov et al., 2000; Kuhn et al., 2004; Fouquet et al., 2008]. Из-за недоступности дна кратера оно не было опробовано, но пробы плюма, отобранные над кратером, свидетельствуют о сильном влиянии процессов серпентинизации. Это также подтверждается отношением CH ₄ /Mn и высокими содержаниями Fe в плюме. Кроме того, несколько образцов брекчий серпентинитов были найдены на стенках кратера. Несмотря на это драгированием были подняты образцы только вулканических пород.	Kochinsky et al., 2006
10	Гидротермальное поле Лилипут (<i>Lilliput</i>), 9°33'ю.ш. Базальты Рифтовая долина САХ	2005	Поле Лилипут было открыто международной экспедицией в рейсе M68/1 на немецком НИС «Меteor». Оно находится на глубине 1500 м и характеризуется диффузным истечением флюида с температурой от 10 до 17 °C.	Kochinsky et al., 2006
11, 12	Гидротермальные поля Галионелла Гаден (Gallionella Garden)* и Сориа Мориа (Soria Moria)*, 71° с.ш. Базальты Хребет Монс	2005	Гидротермальные поля были открыты в рейсе норвежского НИС «G.O. Sars» и находятся в южном сегмента хребта в 50 км к северу от разломной зоны Западный Ян Майен. Глубина в этом районе меняется от 3800 м в разломной зоне до 500 м в центре сегмента, где обнаружены гидротермальные поля. Поле Галионелла Гаден находится в грабеновой структуре, где высоко- и низкогидротермальные истечения встречены вдоль параллельных рифту трещин и разломов на протяжении 2 км. Высокотемпературные истечения (260 °C) обнаружены на глубине около 550 м в основании 100-метровой стены разлома и прослежены на 500 м по простиранию. Поле состоит из 10 участков, на которых были найдены многочисленные трубы «черных курильщиков» высотой 5–10 м. В некоторых «черных курильщиках» были зафиксированы газовые пузыри.	Pedersen et al., 2005

1	2	3	4	5
			Проба верхней части трубы «черного курильщика» состояла из ангидрита, бари- та, пирита и сфалерита. Также на поле зафиксированы диффузные истечения. Поле Сория Мория находится в 5 км южнее поля Галионелла Гаден на глубине 700 м на вулканическом поднятии из лавовых потоков и составляет около 100 м в поперечнике. Поле состоит из многочисленных труб «белых курильщиков», а также неправильной формы холма, на флангах которого сочатся флюиды высо- кой плотности. Белые бактериальные маты покрывают поверхность обоих гидротермальных полей, с ними также ассоциирует многочисленная пригидротермальная фауна.	
13	Гидротермальное поле Лост Вилладж (Lost Village), 30° с.ш. Ультрамафиты САХ	2005	Поле Лост Вилладж было открыто в 50-м рейсе российского НИС «Мстислав Келдыш». Поле находится на южном склоне ультрамафитового массива Атлантис на глубинах 1016–1072 м. Размеры поля составляют 80–100 м с севера на юг и от 25 до 40–50 м с запада на восток. Поле сложено карбонатными породами и в данный момент не активно, в отличие от поля Лост Сити.	Galkin et al., 2006
	·		Индийский океан	
14	Гидротермальное поле в районе 49.5° в.д. Базальты Ультрамедленно-спре- динговый юго-западный Индийский хребет	2007	Активное гидротермальное поле было открыто в рейсе китайского НИС «DayangYihao». Поле находится на восточном окончании спредингового сегмента между трансформными разломами Индомед (<i>Indomed</i>) и Галлиэни (<i>Gallieni</i>). Гидротермальное поле имеет длину 120 м и ширину около 100 м.	Tao et al., 2007
15	Гидротермальные поля 10–16° в.д. Ультрамафиты Ультрамедленно- спрединговый юго- западный Индийский хребет	2002	Гидротермальные системы в районе 10–16° в.д. были открыты в рейсе 162 аме- риканского НИС «Кпогг». Гидротермальный материал, поднятый драгами, пред- ставлен частично окисленными сульфидными брекчиями, сепиолитом и кремне- земом, а также брекчиями, сцементированными Мп-оксидами и нонтронитом. Отложения кремнезема и сепиолита, по данным авторов, сформировались в ре- зультате низко-среднетемпературных гидротермальных процессов на ультраос- новном основании.	Bach et al., 2002

-				
1	2	3	4	5
16	Гидротермальное поле	2000	Гидротермальное поле было открыто японскими исследователями в рейсе НИС	Gamo et
	Кайрей (<i>Kairei</i>), 25°19′		«Kairei». Поле находится в первом сегменте к северу от точки тройного сочле-	al., 2001;
	ю.ш.		нения Родригес. Поле расположено на верхней террасе восточного лестницепо-	Humphris,
	Базальты		добного уступа рифтовой долины в 7 км от оси рифта на глубине 2415-2460 м.	Fornari,
	Центрально-Индийский		Рудные отложения включают реликты труб «черных курильщиков» и сульфид-	2001;
	хребет		ные обломки. Отмечены активные трубы «курильщиков». Отмечено влияние	Kumagai et
			ультрамафитовых пород, распространенных в области тройного сочленения, на	al., 2008
			обогащение гидротермального флюида водородом.	
17	Гидротермальное поле	2000	Гидротермальное поле находится в двух сегментах севернее поля Кайрей на	Humphris,
	Эдмонд (Edmond),		верху восточного уступа рифтовой долины в 6 км от прилегающей оси рифта на	Fornari,
	23°53′ ю.ш.		глубинах 3290-3320 м. Помимо реликтов труб «черных курильщиков» и суль-	2001
	Базальты		фидных обломков на поле широко распространены отложения оксигидроксидов	
	Центрально-Индийский		железа, покрывающих сульфидный холм и обломки. На поле отмечены актив-	
	хребет		ные трубы «черных курильщиков», а также выходы диффузных истечений.	
			Тихий океан	r
18	Гидротермальные поля	2008	Нет информации о составе гидротермальных отложений	Chen, Li,
	между 1.4 и 2.2° ю.ш.			2008
	Осевая часть юго-			
	востока Восточно-			
	Тихоокеанского подня-			
	тия и неосевая подвод-			
	ная гора			
19	Гидротермальное поле	2007	Гидротермальное поле было открыто американскими исследователями в рейсе	New,
	Медуза		НИС «Atlantis». Оно находится на глубине 2550 м. Название гидротермального	2007
	Восточно-		поля подчеркивает обилие необычных розовых звездчатых медуз на площади	
	Тихоокеанское поднятие		излияния гидротерм, температура которых по данным измерений составляет	
	недалеко от побережья		330 °С. Вокруг труб «черных курильщиков» также обнаружены трубчатые черви	
	Коста-Рики		(«alvinellida», «tevnia» и «riftia»).	

Окончание табл.

1	2	3	4	5
20	Гидротермальное поле CDE (сокращенно от <i>COMRA Discovery Expe- dition</i>), 20°40' ю.ш., 176°1' в.д. Вулканиты Спрединговый бассейн Восточный Лау	2007	Гидротермальное поле содержит колонны труб «курильщиков» высотой от 1 до 5 м, покрытые белыми бактериальными матами и анемонами, а также оксигидроксидами железа.	Zhou et al., 2007
21-25	Гидротермальные поля: Кило Моана (Kilo Moana), 20°3.2' ю.ш. Тау Кэм (Tow Cam), 20°19' ю.ш. ABE (сокращенно от Autonomous Benthic Explorer), 20°45.6-46' ю.ш. Маринер (Mariner), 22°10.8' ю.ш. Туи Малила (Tui Malila), 21°59.4' ю.ш. Вулканиты	2004	Гидротермальные поля Кило Моана, Тау Кэм и АВЕ были открыты американ- скими исследователями в течение двух рейсов НИС «Kilo Moana». Гидротер- мальное поле Маринер открыто во время программы Shinkai 6500, поле Туи Малила – в ходе рейса TUIM05MV. На полях Кило Моана, Тау Кэм, АВЕ и Туи Малила гидротермальная активность обнаружена вблизи главных разломов. В основном, высокотемпературные трубы «черных курильщиков» сложены медно-цинковыми рудами, а температура флюидов достигает 363 °С. Истечение гидротермальных флюидов также проис- ходит диффузно через поры в ульевидных постройках. Флюиды на поле Туи Малила, помимо «курильщиков», просачиваются на флангах поля и через анде- зиты. На поле также установлены гидротермальные брекчии. На поле Маринер также установлены неактивные хрупкие трубы из оксидов железа.	Tivey et al., 2005
26	Гидротермальное поле Накаяма, 12°43′ с.ш., 143°32′ в.д. Вулканиты Марианский трог	2004	Гидротермальное поле находится на подводном вулкане в самой южной части Марианского трога. Обнаружены признаки гидротермальной активности, трубы «черных курильщиков», обильная пригидротермальная фауна. Неактивные тру- бы состоят из Fe- и Cu-оскидов и отличаются хрупкостью.	Gamo et al., 2004

Примечание. * – в некоторых источниках гидротермальные поля Галионелла Гаден и Сориа Мориа упоминаются как **Тролль Уол** (*Troll Wall*) и **Fairy Tale** (*Фейри Тейл*) соответственно (http://www.geobio.uib.no/Default.aspx?pageid=1143).