Ярош П. Я. Диагенез и метаморфизм колчеданных руд на Урале. М.: Наука, 1973. 239 с.

Goodfellow W. D., McCatcheon S. P. Geological and genetic attributes of volcanicsediment-hosted massive sulfide deposits of the Baturst Mining Camp, Northern New Brunswick – a synthesis // Economic Geology Monograph. 2003. Vol. 11. P. 497–512.

Maslennikov V. V., Maslennikova S. P., Large R. R., Danyushevsky L. V. Study of trace element zonation in vent chimneys from the Silurian Yaman-Kasy VHMS (the Southern Urals, Russia) using laser ablation inductively coupled plasma mass spectrometry (LA-ICP MS) // Economic Geology. 2009. Vol. 104. P. 1111–1141.

Petersen E. U. Tin in volcanogenic massive sulfide deposits: an example from the Geco Mine, Manitouwadge district, Ontario, Canada // Economic Geology. 1986. Vol. 81. P. 323–342.

И. А. Блинов Институт минералогии УрО РАН, г. Миасс ivan_a_blinov@mail.ru

Гипергенные минералы бурых железняков Амурского месторождения (Ю. Урал)

Амурское цинковое месторождение находится в Брединском районе Челябинской области. Месторождение было открыто по выходам бурых железняков [Штейнберг и др., 1976ф]. В 2007–2008 гг. на месторождении проведены разведочные работы, по результатам которых выделены тела окисленных «несульфидных» цинковых руд. Зона окисления Амурского месторождения имеет линейную морфологию и приурочена к тектоническому шву. Промышленный интерес представляли глинистые продукты гипергенных изменений перекрывающих вулканитов с содержаниями цинка до 3 мас. % в форме сорбированного комплекса смектитизированных хлоритов и слюд [Отчет..., 2008ф; Белогуб, 2009]. Поверхностная зона окисления, представленная бурыми железняками, не представляла экономического интереса и осталась недоизученной, в связи с чем сформулирована цель данной работы – характеристика гипергенных минералов в бурых железняках Амурского месторождения.

Было изучено 4 аншлифа, изготовленных из кернового материала. Химический состав минералов определен автором на СЭМ Vega 3 sbu Tescan с ЭДС Oxford Instruments X-act.

Бурые железняки представлены различными структурно-текстурными разностями. Основными типами являются сплошные агрегаты гидроксидов железа и кварцевые брекчии, в которых гидроксиды железа являются цементом или вкраплены в кварцевом агрегате. Основные новообразованные минералы – гетит и гидрогетит, также выявлены барит, минералы группы крандаллита, селениды (тиманнит и клаусталит), единичные зерна природной латуни, золота, йодаргирита и гипергенного сфалерита.

Гидроксиды железа широко распространены в виде сплошных массивных, ноздреватых агрегатов. Они цементируют кварцевые зерна, пропитывают мелкозернистый кварц, придавая ему бурую окраску, и представлены массивными, радиальнолучистыми, натечными, почковидными, спутано-волокнистыми агрегатами. Наличие конформных обломков агрегатов гидроксидов железа указывает на просадки во время формирования железной шляпы.

Элементы-примеси характерны для радиально-лучистых, спутано-волокнистых, реже – натечных разновидностей. В большинстве натечных и почковидных агрегатов примеси, при чувствительности прибора около первых сотых долей процента, не зафиксированы. Содержания Zn и Pb не превышают 0.5 и 2.8 мас. % соответственно. Отмечаются примеси V и Ti до 0.6 мас. %. Корреляционный анализ данных 50 анализов показал, что Zn имеет значимую отрицательную связь с Ca (-0.6), а Pb – положительную с Ba и K (1.0), что вероятно, связано с первичной ассоциацией галенита и барита.

Следующими по распространенности гипергенными минералами являются минералы группы крандаллита, близкие к горсейкситу

$(Ba_{0.68}Pb_{0.17})_{0.85}(Al_{2.87}Fe_{0.06}Zn_{0.06})_{2.98}(P_{1.81}Si_{0.10}S_{0.09})_{2.0}O_8(OH, H_2O)_6$

и плюмбогумиту

(таблица, коэффициент при гидроксильной группе – теоретический). Содержания Zn в изученных зернах не превышает 0.8 мас. %, при этом в гетите, обрастающем крандаллит, цинк не обнаружен, но присутствует свинец (см. табл.). Корреляционный анализ по данным 16 анализов показывает, что в минералах группы крандаллита Zn характеризуется положительной связью с P (0.8) и Ba (0.7), отрицательной – с S (-0.8), Pb (-0.9) и Ca (-1.0). В то же время Pb образует только отрицательные связи с Ca (-0.7), Zn, Sr (-0.8) и Ba (-1.0), которые, за исключением Zn, входят в одну кристаллохимическую позицию с Pb.

Таблица

№ п.п.	№ спектра	Pb	Sr	Ba	Al	Fe	Zn	V
1	12323s	8.69	-	17.79	14.43	1.18	0.87	-
2	12323t	13.33	1.03	15.96	14.16	1.16	0.75	_
3	12323u	4.19	1.96	16.86	12.92	1.18	0.99	-
4	12323v	32.64	-	-	12.93	1.32	-	-
5	12323w	1.36	-	-	0.84	61.94	-	0.31

Состав зонального кристалла крандаллита (1-4) и гетита (5), мас. %

Окончание табл.

№ п.п.	№ спектра	Р	Si	S	Ca	0	Сумма
1	12323s	10.39	-	_	0.08	37.23	90.66
2	12323t	10.53	0.34	-	0.07	37.93	95.25
3	12323u	10.64	0.32	0.19	0.14	33.23	82.63
4	12323v	7.68	-	2.15	H.o.	32.74	89.45
5	12323w	0.42	0.8	_	0.18	34.16	100.00

Примечание. Данные исследований на СЭМ. Прочерк – не обнаружено. Низкая сумма связана с мелкими размерами зерен и присутствием воды в структуре минералов группы крандаллита.

Форма кристаллов минералов группы крандаллита, размеры которых не превышают 50 мкм, и их непостоянный состав указывают на нестабильные условия минералообразования, характерные, в целом, для формирования зон окисления (рис., см. вкладку, стр. 157). Центральная часть кристалла представлена минералом, близким к горсейкситу. После хрупкой деформации трещины и внешняя зона залечена плюмбогумитом. В некоторых зернах наблюдалась сложная зональность плюмбогумит–горсейксит–плюмбогумит. На кристаллы минералов группы крандаллита всегда нарастают гидроксиды железа.

Барит – также распространенный минерал. Образует кристаллы, скопления и сростки размером до 0.5 мм. Встречается, главным образом, в порах, трещинах, пустотах бурых железняков, что указывает на его гипергенное происхождение. Примеси не выявлены. Присутствие бария в минералообразующей системе может быть связано с разрушением плагиоклазов вмещающих вулканитов.

Тиманнит и клаусталит образуют зерна размером до 20–40 мкм. Встречаются как самостоятельные агрегаты в порах и трещинах, так и включения и срастания с минералами группы крандаллита, реже – в гидроксидах железа. Нередки тонкие срастания обоих селенидов. Химический состав не содержит примесей.

Золото образует зерна размером до 10 мкм и встречается, главным образом, в трещинах, пустотах, реже – как включения в почках гидроксидов железа. Примеси серебра и меди не выявлены. Тем не менее, по составу и структуре золото можно разбить на две группы. Одна группа частиц золота на спектрах содержит минимальные количества примесей и во вторичных электронах выглядит намного ярче, чем окружающие минералы. Для части выделений на энергодисперсионных спектрах выявляются Si, Al, O, и при просмотре с помощью детектора вторичных электронов такое золото лишь немного ярче, чем гидроксиды железа.

Сфалерит образует редкие зерна размером до 15 мкм и идиоморфные кристаллы в трещинах и пустотах среди гидроксидов железа, что свидетельствует о его гипергенном происхождении. Содержание железа в сфалерите достигает 10 %.

Йодаргирит встречается в виде редких мелких зерен размером до 3 мкм, главным образом, в участках массивных сливных агрегатов гидроксидов железа. Йодбром-хлораргирит также найден в виде редких, мелких зерен размером до 1.5 мкм (содержания анионов возрастают в ряду I, Br, Cl). Подобно йодаргириту, он приурочен к участкам массивных сливных агрегатов гидроксидов железа. Однако эти галогениды серебра пространственно разобщены и встречаются в разных образцах.

Самородная латунь и цинкит представлены единичными зернами размером около 5–6 мкм в трещинах агрегатов гидроксида железа.

Таким образом, проведенные электронно-микроскопические исследования показали неоднородность химического состава гидроксидов железа и минеральное разнообразие бурых железняков Амурского месторождения. Здесь впервые выявлены гипергенные минералы, принадлежащие к классам самородных веществ, сульфидов, селенидов, фосфатов, галогенидов, сульфатов, оксидов.

Мелкие размеры минералов и их непостоянный состав свидетельствуют о многократной смене условий минералообразования. На переходы между восстановительными и окислительными условиями указывают нахождение в одном образце таких редких минералов-индикаторов как гипергенный сфалерит, цинкит, самородная латунь, селениды, крандаллит и гидроксиды железа. Находка селенидов ртути и свинца в железной шляпе подтверждает тезис об их более высокой устойчивости в окислительных условиях, чем сульфидов аналогичных металлов [Belogub et al., 2008]. В геохимическом плане в зоне окисления происходит разделение Zn и Pb. Более высокие содержания Zn в гипергенных минералах характерны для глинистых продуктов изменения вулканитов из более глубоких частей профиля окисления, а Pb – в близких к поверхности бурых железняках.

Автор благодарен Е. В. Белогуб и К. А. Новоселову за помощь в работе. Работа выполнена при поддержке гранта 12-05-31188 мол а.

Литература

Белогуб Е. В. Гипергенез сульфидных месторождений Южного Урала. Дис. ... докт. геол.-мин. наук. Миасс: ИМин УрО РАН, 2009. 536 с.

Отчет о результатах поисково-оценочных работ, выполненных в 2007–2008 гг. на Амурском месторождении цинковых руд с подсчетом запасов по состоянию на 01 октября 2008 г. Ответ. исполнители Баль В. И., Пужаков Б. А. Челябинск, 2008ф. 232 с.

Штейнберг А. Д., Абдуллин Р. З., Скопина Н. А. и др. Отчет о результатах геофизических и геолого-поисковых работ м-ба 1: 25000 на площади Амамбайской и Амурской рудоносных зон в Агаповском, Кизильском и Брединском районах Челябинской области за 1972– 76 гг. Том 1 – текст отчета. Челябинск-Магнитогорск, 1976ф. 294 с.

Belogub E. V., Novoselov K. A., Yakovleva V. A., Spiro B. Supergene sulphides and related minerals in the supergene profiles of VHMS deposits from the South Urals // Ore Geology Reviews. 2008. Vol. 33. Is. 3–4. P. 239–254.

А. Г. Гладков Институт минералогии УрО РАН, г. Миасс black.gnom@mail.ru

Сравнение термоЭДС оруденелой фауны месторождения Сафьяновское (Средний Урал) и гидротермального поля Галапагосского рифта (Тихий океан)

(научный руководитель В. В. Масленников)

Термоэлектрический эффект в минералах-полупроводниках заключается в возникновении в них градиента температуры термоэлектродвижущей силы – термоЭДС. Для большей части полупроводников коэффициент термоЭДС зависит от химического состава минералов, количества примесей в них и изменяется с повышением или понижением температуры. Возникновение в полупроводнике термоЭДС связано с изменением концентрации и кинетической энергии свободных носителей электрических зарядов (электронов и дырок) и их диффузией из более горячей области полупроводника в область с пониженной температурой. Это приводит к возникновению в полупроводнике зарядов свободных носителей электричества и противоположных по знаку зарядов ионов кристаллической решетки, что влечет за собой возникновение внутреннего электрического поля. Следует отметить, что электрический ток, возникающий при миграции электронов, носит постоянный характер [Гинзбург, 1985].

Для исследования термоэлектрических свойств минералов был применен зондовый метод с использованием двух зондов в виде заостренных медных стержней.