Е. Ю. Федоренко¹, Е. Б. Дайнеко¹, А. М. Юминов², В. В. Зайков², Л. А. Белостоцкая¹, А. Г. Токарев¹

1 – Национальный технический университет «ХПИ», г. Харьков fedorenko_e@ukr.net

2-Южно-Уральский государственный университет, г. Миасс

Перспективы получения плотноспеченной керамики на основе кварц-пирофиллитовых и плагиоклаз-серицитовых пород

Плотноспеченные керамические материалы занимают лидирующее положение среди современных видов технической и строительной керамики, поскольку обладают максимальной плотностью, прочностью, износостойкостью, морозостойкостью, химстойкостью, прочностью на пробой и низкой электропроводностью, благодаря чему могут использоваться для производства электроизоляционных изделий, химаппаратуры и архитектурно-фасадных элементов.

В настоящее время изучению возможности использования нетрадиционных сырьевых материалов в составе керамических масс уделяется большое внимание. Причиной тому является нехватка высококачественного сырья, а также возрастающие потребности предприятий отрасли, что требует расширения минеральной сырьевой базы керамической промышленности. К числу таких видов горных пород относятся пирофиллитовые и серицит-плагиоклазовые породы. Возможность использования пирофиллита в керамическом производстве определяется его близким к нулевому водопоглощением (менее 1 %), которое практически не меняется в результате обжига материала, а также высокими диэлектрическими свойствами и кислотостой-костью продуктов обжига [Гурський и др., 2006]. Серицит является прекрасным диэлектриком, чем обусловлена его практическая ценность [Еремин, 2004].

Целью данной работы стала разработка составов керамических масс для получения плотноспеченных изделий строительного назначения на основе комплексного изучения химико-минерального состава, свойств и процессов, сопровождающих термообработку сырья месторождений Южного Урала: кварц-пирофиллитового сырья Чистогоровского месторождения и плагиоклаз-серицитовых пород участка Степное.

Результаты исследования Чистогоровского месторождения кварц-пирофиллитового сырья детально описаны в работе [Зайков и др., 2011]; серицитолиты участка Степное – в работе [Юминов, Синяковская, 2010]. В процессе работы были получены данные о составах и технологических свойствах кварц-пирофиллитового и плагиоклаз-серицитового сырья. Эти сведения, а также полученная информация о физикохимических превращениях данных материалов при термообработке позволили разработать составы масс и глазурей для получения плотноспеченной керамики разного функционального назначения.

Миасс: ИМин УрО РАН, 2012

Химический анализ исследуемого технического сырья выполнен в Институте минералогии УрО РАН, аналитик М. Н. Маляренок. Химический состав материалов приведен в таблице 1.

Таблица 1 Состав кварц-пирофиллитовых и плагиоклаз-серицитовых пород, мас. %

Проба	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	P ₂ O ₅	п.п.п.
Ch-9	80.35	0.38	15.10	0.05	< 0.05	< 0.05	0.10	0.12	0.20	0.20	0.09	3.30
К3-К4	44.91	1.50	37.98	0.47	< 0.10	< 0.01	0.32	< 0.01	1.60	8.34	0.10	4.65

П р и м е ч а н и е . Ch-9 — кварц-пирофиллитовая порода, K3-K4 — плагиоклаз-серицитовая порода.

По данным петрографического анализа минеральный состав пород представлен (%) серицитом (90) и плагиоклазом (10) (обр. КЗ-К4) и пирофиллитом (65), кварцем (30) и серицитом (5). Эти данные подтверждаются результатами рентгенофазового анализа (дифрактометр ДРОН 3М, Национальный технический университет «ХПИ», г. Харьков, аналитик К. П. Вернигора). На дифрактограмме пробы Ch-9 (рис. 1а) присутствуют также рефлексы каолинита малой интенсивности. В составе пробы КЗ-К4 (рис. 1б) дополнительно идентифицирована гидрослюда (5.493; 11.0 А и др.).

Для прогнозирования фазового состава продуктов обжига исследуемых пород проводилось моделирование их поведения при нагревании с использованием методов физико-химического анализа систем основных породообразующих оксидов. Положение фигуративных точек состава исследуемых материалов на трехкомпонентных диаграммах $Na_2O-Al_2O_3-SiO_2$ и $K_2O-Al_2O_3-SiO_2$ показано на рисунке 2a.

Состав Ch-9 на диаграммах находится в поле кристаллизации муллита, а состав K3-K4 — в поле кристаллизации корунда. Построение диаграмм плавления моделей материалов позволило предварительно (до проведения экспериментальных исследований) оценить соотношения фаз в продуктах их обжига, а также спрогнозировать порядок фазовых превращений при нагревании в интервале температур $1100-1350~\rm C$ (рис. 2б). При нагревании кварц-пирофиллитовой породы происходит постепенное растворение кварца с образованием расплава, количество которого при $1350~\rm C$ составляет порядка 42 %. Количество муллита A_3S_2 остается практически неизменным (~20 %). При нагревании плагиоклаз-серицитовой породы наблюдается инкогруэнтное плавление ортоклаза KAS_6 с образованием лейцита KAS_4 и расплава. При дальнейшем нагревании KAS_4 плавится, увеличивая количество расплава. Выше $1300~\rm C$ лейцит плавится более активно, при этом количество муллита A_3S_2 снижается с 33 до 21 %, а количества расплава и корунда при $1350~\rm C$ достигают $50~\rm \%$ и $23~\rm \%$ соответственно.

Изучение процессов, сопровождающих термообработку исследуемых сырьевых материалов, проводили с использованием дифференциально-термического и рентгенофазового анализов. Установлено, что в пробе Ch-9 в температурном интервале 700–900 °C происходит удаление конституционной воды, в результате чего пирофиллит переходит в метапирофиллит: $AS_4H \rightarrow AS_4 + H$, который в дальнейшем разлагается с образованием муллита A_3S_2 и кристобалита S при температуре 1135.7 °C, о чем свидетельствует экзотермический эффект большой интенсивности. Для пробы

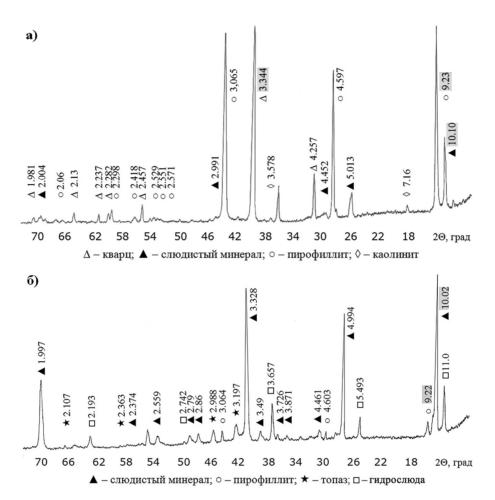
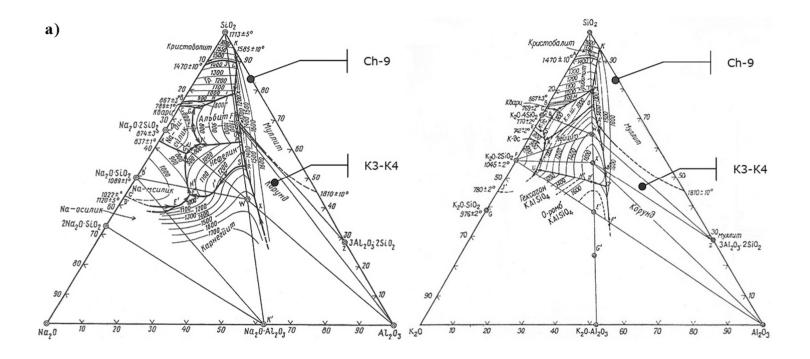



Рис. 1. Дифрактограммы пород: а - кварц-пирофиллитовой (Ch-9); б - плагиоклазсерицитовой (K3-K4).

К3-К4 имеют место аналогичные процессы: удаление конституционной влаги в интервале 700–900 °С и разложение продуктов дегидратации серицита с максимумом реакции при 1157.2 °С с образованием A_3S_2 и S. Рентгенофазовыми исследованиями в продуктах обжига исследуемых пород при температуре 1150 °С идентифицированы муллит и кварц. Это подтверждает ценность исследуемых материалов как источника формирования муллитовой фазы для получения керамических изделий с повышенной химстойкостью, механической и электрической прочностью.

Теоретические расчеты в четырехкомпонентной системе оксидов SiO_2 — Na_2O — K_2O — Al_2O_3 показали, что для получения плотноспеченной керамики при температуре обжига до $1200\,^{\circ}C$ составы оксидных композиций должны находится в следующих пределах (%): $SiO_2\,60$ – $75,\,Al_2O_3\,1$ – $37,\,K_2O\,1$ – $18,\,Na_2O\,1$ – $14\,$ [Федоренко, 2012]. В лабораторных условиях были изготовлены три серии керамических масс: на основе кварц-пирофиллита (Ch-9), плагиоклаз-серицита (K3-K4) и их смеси (Ch-9 + K3-K4). При разработке смесей, кроме кварц-пирофиллитового и плагиоклаз-серицитового

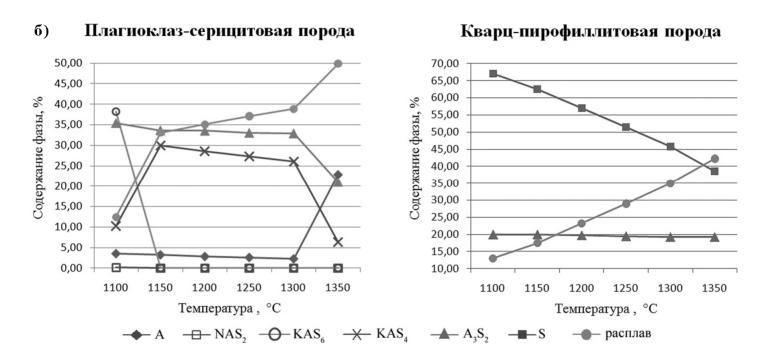


Рис. 2. Фигуративные точки составов исследуемого сырья в системах породообразующих компонентов по [Schairer, Bowen, 1947] и динамика изменения фазового состава продуктов обжига при 1100–1350

сырья, использовали каолинит-гидрослюдистую тугоплавкую глину «Веско-Прима» и доломит Н в качестве модифицирующей добавки. Массы готовили путем тонкого мокрого помола в шаровых мельницах до остатка на сите 0063–1.5 %. Из обезвоженного шликера готовили пресс-порошок с влажностью 6.5–7.5 %. Образцы прессовали на гидравлическом прессе при давлении 35 МПа. Высушенные образцы обжигали в муфельной печи при температурах: 1100, 1150, 1200 и 1250 °C с 20-минутной выдержкой. Состав масс и свойства полученных образцов приведены в таблице 2.

Таблица 2 Состав керамических масс и свойства образцов

Содержание оксидов, мас. %	Смеси							
Содержание оксидов, мас. /	P-1	P-2	P-3					
SiO_2	54.45	72.25	62.03					
Al_2O_3	31.13	17.72	26.04					
Fe_2O_3	1.08	0.96	1.0					
${ m TiO_2}$	1.46	0.73	1.23					
CaO	3.08	3.22	3.10					
MgO	2.14	1.98	2.08					
Na ₂ O	1.08	0.96	0.75					
K ₂ O	5.58	2.18	3.77					
Свойства								
Водопоглощение (%) при температуре обжига, °C								
1100	10.6	13.5	14.9					
1150	0.50	0.12	0.09					
1200	0.18	0.49	0.12					
1250	1.10*	0.21*	0.16*					
Общая усадка (%) при температуре обжига, °C								
1150	8.0	7.0	7.5					
1200	7.0	6.0	7.0					
Прочность на изгиб (МПа) при температуре об-								
жига, °С	32.0	25.0	30.0					
1150	34.0	27.0	32.0					
1200								
Морозостойкость, циклы	> 50**	> 50**	> 50**					
Износостойкость, мм ³	133**	120**	130**					
Кислотостойкость, %	98.7**	99.1**	98.9**					

 Π р и м е ч а н и е . * — деформация и оплавление образца, ** — для образцов, обожженных при $1150\,^{\circ}\mathrm{C}.$

Как видно из приведенных данных, керамические массы после скоростного обжига при 1100 °C имеют водопоглощение 10.6–14.9 % и пригодны для изготовления облицовочных плиток. В результате обжига при 1150–1200 °C получены плотноспеченные материалы с водопоглощением менее 0.5 %, высокой устойчивостью к 20 %-ной HCl, морозо- и износостойкостью. Исследованиями фазового состава образцов установлено наличие в материале муллита, кварца и стеклофазы. Интервал спеченного состояния масс составляет 80 °C; при повышении температуры до 1250 °C наблюдается склонность образцов к деформации.

Таким образом, проведенные исследования свидетельствуют о перспективности использования кварц-порифиллитовых и плагиоклаз-серицитовых пород в составах масс тонкой строительной и плотноспеченной керамики. Разработанные массы позволяют получать керамические плитки, отвечающие международному стандарту ISO 13006:1998 и предназначенные для использования в технологии керамических плиток с разной степенью спекания, предусматривающей скоростной обжиг.

Исследования поддержаны РФФИ (проект 11-05-96033).

Литература

Гурський Д. С., Єсипчук К. Ю., Калінін В. І. та ін. Металічні та неметалічні корисні копалини України. Т. 2. Неметалічні корисні копалини. Київ-Львів: Центр Європи, 2006. 174 с.

Еремин Н. И. Неметаллические полезные ископаемые. М.: Академкнига, 2004. 464 с.

Зайков В. В., Синяковская И. В., Удачин В. Н., Юминов А. М. Пирофиллитовое сырье Чистогоровского месторождения (Южный Урал) // Минералогия Урала–2011. Мат. VI Всерос. сов. Миасс–Екатеринбург: УрО РАН, 2011. С. 137–141.

Федоренко Е. Ю. Теоретичні принципи отримання щільноспеченої кераміки за умов енергоощадної термообробки // Вестник Национального технического университета ХПИ. 2012. № 1. С. 113–118.

Юминов А. М., Синяковская И. В. Серицитолиты участка Степное // Геология, полезные ископаемые и проблемы геоэкологии Башкортостана, Урала и сопредельных территорий. Мат. VIII межрегион. науч.-практ. конф. Уфа: ИГ УНЦ РАН, 2010. С. 156–159.

Schairer I. F., Bowen N. L. Melting relations in the systems Na₂O–Al₂O₃–SiO₂ and K₂O–Al₂O₃–SiO₂ // American Journal of Sciences. 1947. Vol. 245. № 4. P. 193–204.