Р. А. Бадмацыренова, А. Л. Елбаев, Д. В. Гороховский Геологический институт СО РАН, г. Улан-Удэ brose@gin.bscnet.ru

Геология и геохимия Ингодинского дунит-троктолит-габбрового массива, Центральное Забайкалье

Ингодинский базит-ультрабазитовый массив, являющийся петротипическим для одноименного интрузивного комплекса, располагается в верховьях р. Ингоды. Он имеет форму дискордантного асимметричного лополита, глубинная часть которого смещена к южному контакту, и занимает площадь около 100 км². На севере массив имеет интрузивные контакты с гнейсами малханской серии и раннепротерозойскими

Миасс: ИМин УрО РАН, 2012

289

гранитами, на юге – с отложениями куналейской свиты позднего ордовика. Северная его часть маломощна и сложена практически однородными слабо расслоенными троктолитами. Южная часть, по данным [Криволапов, 1976], имеет форму воронки концентрически-зонального строения с залеганием «слоев» под углом 50–60?, реже 30?. Ядро воронки сложено меланократовыми габбро и норитами. Массив обладает четко выраженной расслоенностью, определяющейся наличием крупных протяженных (до 1.5 км) зон троктолитов, габбро и норитов, в которых наблюдается более тонкая расслоенность с мощностью слоев от 10 см до первых метров, обусловленная различным количественным соотношением салических и фемических минералов. Границы между «слоями», как правило, четкие. В некоторых случаях отмечаются такситовые текстуры с выделением гнездо- и шлирообразных анортозитов.

Ультраосновные породы, развитые в центральной части на левобережье р. Ингоды, предыдущими исследователями были отнесены к дайкам субвертикального падения северо-западного простирания различной мощности и протяженности до 3 км. При проведении полевых исследований в наиболее обнаженной части массива (междуречье pp. Гужертай-Гайбет-Аргайка) выявлено, что ультраосновные породы представляют собой не дайки, а горизонты, прослои и линзы ритмично расслоенной серии массива. Отмечается интенсивное тектоническое и контактовое воздействие прорывающих их верхнепалеозойских гранитов, выражающееся в амфиболизации, хлоритизации, серпентинизации всех пород массива.

Петролого-геохимическими исследованиями установлено, что по составу дуниты и троктолиты соответствуют низкощелочным образованиям, в то же время часть габброидных пород (амфиболизированные разновидности) попадает в поле умереннощелочных пород. В целом, все фигуративные точки составов образуют единый тренд, свидетельствующий о фракционной кристаллизации пород массива из единого магматического расплава.

На диаграмме Л. В. Дмитриева, показывающей соотношение салических и мафических окислов в гипербазитах и габброидах массива, все фигуративные точки составов располагаются вдоль линии В – тренда фракционной кристаллизации базальтовой магмы. На диаграмме AFM фигуративные точки состава пород группируются в поле известково-щелочной серии. На вариационных «харкеровских» диаграммах обнаруживается «базальтоидный» тренд дифференциации Ингодинского массива, он заключается в постепенном накоплении Al₂O₃ и CaO в поздних дифференциатах по мере уменьшения в расплаве MgO.

Редкоземельные элементы являются одними из наименее подвижных, на них слабо влияют процессы гидротермального изменения и низкотемпературного метаморфизма, поэтому их содержание наиболее корректно отражает состав магматических пород и степень плавления мантийного вещества [Балашов, 1976].

Содержание РЗЭ в породах массива составляет не более 10-кратных хондритовых норм. Для дунитов характерны слабо дифференцированные графики распределения лантаноидов при величине отношения La/Yb_N = 1.24–1.95. Спектры РЗЭ в габброидах характеризуются преобладанием легких и средних лантаноидов над тяжелыми при величине отношения La/Yb_N = 4.7–23.38. Во всех разновидностях отмечается положительная европиевая аномалия Eu/Eu^{*} = 1.75–5.11. Практически идентичный график распределения лантаноидов характерен для анортозитов расслоенной серии (La/Yb_N = 13.76, Eu/Eu^{*} = 5.55), однако, общий уровень нормированных содержаний лантаноидов в этих породах значительно ниже. Таким образом, Ингодинский массив обладает всеми признаками контрастно расслоенных ультрабазит-базитовых плутонов с дунит-троктолит-габбровой ассоциацией пород. По типу дифференциации и набору петрографических разновидностей пород массив обнаруживает общие черты сходства с Йоко-Довыренским (Северное Прибайкалье) [Толстых и др., 2008] и Лукиндинским (Становая область) [Бучко, Кудряшов, 2005] массивами. По петрохимическим параметрам породы массива характеризуются низкой железистостью и титанистостью, отличаются высокой магнезиальностью. От ультраосновных пород к основным наблюдается повышение глиноземистости при постоянно сохраняющемся натриевом уклоне щелочности.

Литература

Балашов Ю. А. Геохимия редкоземельных элементов. М.: Наука, 1976. 268 с.

Бучко И. В., Кудряшов Н. М. Геохимические особенности расслоенных массивов восточной части Западно-Станового террейна (южное обрамление Северо-Азиатского кратона) // Тихоокеанская геология. 2005. Т. 24. № 2. С. 95–103.

Толстых Н. Д., Орсоев Д. А., Кривенко А. П. Изох А. Э. Благороднометалльная минерализация в расслоенных ультрабазит-базитовых массивах юга Сибирской платформы. Новосибирск: Параллель, 2008. 194 с.

> *М. М. Мачевариани, В. И. Алексеев* Санкт-Петербургский государственный горный университет, г. Санкт-Петербург wmdmaria@gmail.com

Типоморфные особенности циркона как индикаторы условий формирования Верхнеурмийских гранитоидов (Приамурье)

Введение. В районе Баджальского и Мяо-Чанского хребтов Приамурья широко распространены гранитоидные плутоны, которые играют важную роль в локализации редкометального оруденения крупнейшего Баджало-Комсомольского оловорудного района. Гранитоиды принадлежат к разным возрастным сериям и породным ассоциациям, поэтому их типизация традиционно вызывает споры и требует привлечения новых источников информации [Григорьев, 1997]. Выявление типоморфных особенностей акцессорных минералов гранитоидов способствует корректному расчленению интрузивных образований и поискам редкометальных гранитов в Приамурье. Циркон, широко распространенный акцессорный минерал, является одним из важнейших минералов-индикаторов условий петрогенеза. Были изучены цирконы из гранитоидов Верхнеурмийского массива, сложенного четырьмя фазами: крупно-, средне-, мелкозернистыми биотитовыми и среднезернистыми циннвальдитовыми гранитами, относящимися к литий-фтористому геохимическому типу и контролирующими гигантское Правоурмийское оловорудное месторождение [Кривовичев и др., 1997]. По данным эволюционного кристалломорфологического анализа (ЭКА) [Бродская и др., 1997] и растровой электронной микроскопии (РЭМ-JSM-6460LV (Jeol), СЦКП СПбГГУ, аналитик И. М. Гайдамако) проведена типизация цирконов и первичная генетическая интерпретация выявленных параметров.

В составе гранитов Баджальского района выявлены два основных типа циркона. Первый тип Zrn-Bt (рис. 1) включает типичные магматические цирконы, характерные для пород начальных членов редкометальных гранитоидных серий – гранодиоритов, нормальных гранитов. Zrn-Bt характеризуется преобладанием морфотипа P₄ на диаграмме Пюпена с началом кристаллизации при 850 °C и, соответственно, относительной маловодностью материнского расплава. Для него характерно малое количество дефектов микротекстуры зерен и осцилляторная зональность, свидетельствующие о долгой истории минералообразования. ZrO₂/HfO₂ отношение составляет 58.

Свойства цирконов второго типа Zrn-Znw (рис. 1) позволяют связывать их генетически с редкометальными литий-фтористыми гранитами. Для Hf-содержащего циркона второго типа ($ZrO_2/HfO_2 = 19$) выявлено преобладание морфотипов P₁ и P₃ по диаграмме Пюпена. Кристаллизация Zrn-Znw началась при 800 °C, а интервал распространения основных морфотипов соответствует 650–750 °C. Характерная «изъеденная» микротекстура и микротрещиноватость зерен, грубая зональность, повышенные содержания, в первую очередь, Hf, а так же U, Th, REE, позволили сделать выводы о формировании Zrn-Znw во флюидонасыщенном расплаве и интенсивном воздействии гидротерм на поздних стадиях роста циркона. Выделение двух типов цирконов подтверждается расположением фигуративных точек состава на тройной диаграмме Hf-Th-U (рис. 2).

На основании морфологии в каждом типе цирконов выделены подтипы, химический состав которых отражен в таблице.

В биотитовых гранитах выделяются два подтипа циркона: цирконы из собственно биотитовых гранитов (Zrn-Bt) и цирконы из гранит-порфиров (Zrn-порф). Для Zrn-Bt характерен морфотип P_4 , повышенные содержания Hf и U. Zrn-порф обогащен Fe и Th, для него характерен морфотип P_1 и удлиненные грани призмы. В циннвальдитовых гранитах выделяют «обычные» цирконы (Zrn-Znw), обогащенные U, Hf, REE, (As, Bi) и измененные цирконы (Zrn-Znw_изм) с повышенными содержаниями Hf, Fe,Th, (Ca, Al).

Рис. 1. Анатомия индивидов циркона из биотитовых (Zrn-BT) и циннвальдитовых (Zrn-ZNW) гранитов Верхнеурмийского массива: a - в режиме BSE; b - в режиме SE.

Таблица

Zrn-Bt	Сред.	Мин.	Макс.	Zrn-Znw	Сред.	Мин.	Макс.
SiO ₂	33.13	31.07	37.05	SiO ₂	31.99	19.72	36.84
P_2O_5	0.01	0.01	0.01	P ₂ O ₅	1.14	0.01	17.23
Fe ₂ O ₃	0.57	0.01	1.27	Fe ₂ O ₃	0.75	0.01	5.39
Y_2O_3	0.01	0.01	0.01	Y_2O_3	1.50	0.01	15.63
ZrO ₂	64.97	58.48	67.04	ZrO ₂	60.09	31.57	67.38
Sm ₂ O ₃	0.01	0.01	0.01	Sm ₂ O ₃	0.03	0.01	0.66
Gd ₂ O ₃	0.01	0.01	0.01	Gd ₂ O ₃	0.07	0.01	1.68
Dy ₂ O ₃	0.01	0.01	0.01	Dy ₂ O ₃	0.21	0.01	2.73
Er ₂ O ₃	0.01	0.01	0.01	Er ₂ O ₃	0.17	0.01	3.50
Yb ₂ O ₃	0.01	0.01	0.01	Yb ₂ O ₃	0.55	0.01	6.32
HfO ₂	0.72	0.01	3.63	HfO ₂	1.90	0.01	6.19
ThO ₂	0.07	0.01	0.67	ThO ₂	0.32	0.01	3.57
UO ₂	0.49	0.01	2.33	UO ₂	0.85	0.01	4.86
CaO	0.01	0.01	0.01	CaO	0.08	0.01	0.88
Al ₂ O ₃	0.01	0.01	0.01	Al ₂ O ₃	0.21	0.01	5.23
K ₂ O	0.01	0.01	0.01	K ₂ O	0.04	0.01	1.94
Bi ₂ O ₃	0.01	0.01	0.01	Bi ₂ O ₃	0.12	0.01	2.64
As ₂ O ₃	0.01	0.01	0.01	As ₂ O ₃	0.04	0.01	0.77
-				2 5			
Zrn-порф	Сред.	Мин.	Макс.	Zm-Znw_изм	Сред.	Мин.	Макс.
Zrn-порф SiO ₂	Сред. 33.13	Мин. 31.87	Макс. 36.62	Zm-Znw_изм SiO ₂	Сред. 32.56	Мин. 26.59	Макс. 34.38
Zrn-порф SiO ₂ P ₂ O ₅	Сред. 33.13 0.01	Мин. 31.87 0.01	Макс. 36.62 0.01	Zm-Znw_изм SiO ₂ P ₂ O ₅	Сред. 32.56 0.48	Мин. 26.59 0.01	Макс. 34.38 9.81
Zrn-порф SiO ₂ P ₂ O ₅ Fe ₂ O ₃	Сред. 33.13 0.01 0.42	Мин. 31.87 0.01 0.01	Макс. 36.62 0.01 1.71	Zm-Znw_изм SiO ₂ P ₂ O ₅ Fe ₂ O ₃	Сред. 32.56 0.48 1.06	Мин. 26.59 0.01 0.01	Макс. 34.38 9.81 5.92
Zrn-порф SiO ₂ P ₂ O ₅ Fe ₂ O ₃ Y ₂ O ₃	Сред. 33.13 0.01 0.42 0.01	Мин. 31.87 0.01 0.01 0.01	Макс. 36.62 0.01 1.71 0.01	Zm-Znw_изм SiO ₂ P ₂ O ₅ Fe ₂ O ₃ Y ₂ O ₃	Сред. 32.56 0.48 1.06 0.58	Мин. 26.59 0.01 0.01 0.01	Макс. 34.38 9.81 5.92 9.27
Zrn-порф SiO ₂ P ₂ O ₅ Fe ₂ O ₃ Y ₂ O ₃ ZrO ₂	Сред. 33.13 0.01 0.42 0.01 65.67	Мин. 31.87 0.01 0.01 0.01 60.46	Макс. 36.62 0.01 1.71 0.01 67.40	Zm-Znw_изм SiO ₂ P ₂ O ₅ Fe ₂ O ₃ Y ₂ O ₃ ZrO ₂	Сред. 32.56 0.48 1.06 0.58 58.18	Мин. 26.59 0.01 0.01 0.01 45.04	Макс. 34.38 9.81 5.92 9.27 65.88
Zrn-порф SiO ₂ P ₂ O ₅ Fe ₂ O ₃ Y ₂ O ₃ ZrO ₂ Sm ₂ O ₃	Сред. 33.13 0.01 0.42 0.01 65.67 0.01	Мин. 31.87 0.01 0.01 0.01 60.46 0.01	Макс. 36.62 0.01 1.71 0.01 67.40 0.01	Zm-Znw_изм SiO ₂ P ₂ O ₅ Fe ₂ O ₃ Y ₂ O ₃ ZrO ₂ Sm ₂ O ₃	Сред. 32.56 0.48 1.06 0.58 58.18 0.01	Мин. 26.59 0.01 0.01 0.01 45.04 0.01	Макс. 34.38 9.81 5.92 9.27 65.88 0.01
Zrn-порф SiO ₂ P ₂ O ₅ Fe ₂ O ₃ Y ₂ O ₃ ZrO ₂ Sm ₂ O ₃ Gd ₂ O ₃	Сред. 33.13 0.01 0.42 0.01 65.67 0.01 0.01	Мин. 31.87 0.01 0.01 0.01 60.46 0.01 0.01	Макс. 36.62 0.01 1.71 0.01 67.40 0.01 0.01	Zm-Znw_изм SiO ₂ P ₂ O ₅ Fe ₂ O ₃ Y ₂ O ₃ ZrO ₂ Sm ₂ O ₃ Gd ₂ O ₃	Сред. 32.56 0.48 1.06 0.58 58.18 0.01 0.01	Мин. 26.59 0.01 0.01 0.01 45.04 0.01 0.01	Макс. 34.38 9.81 5.92 9.27 65.88 0.01 0.01
$\begin{array}{c} Zrn - \pi op \varphi \\ SiO_2 \\ P_2O_5 \\ Fe_2O_3 \\ Y_2O_3 \\ ZrO_2 \\ Sm_2O_3 \\ Gd_2O_3 \\ Dy_2O_3 \end{array}$	Сред. 33.13 0.01 0.42 0.01 65.67 0.01 0.01 0.01	Мин. 31.87 0.01 0.01 0.01 60.46 0.01 0.01 0.01	Макс. 36.62 0.01 1.71 0.01 67.40 0.01 0.01 0.01	Zm-Znw_изм SiO ₂ P ₂ O ₅ Fe ₂ O ₃ Y ₂ O ₃ ZrO ₂ Sm ₂ O ₃ Gd ₂ O ₃ Dy ₂ O ₃	Сред. 32.56 0.48 1.06 0.58 58.18 0.01 0.01 0.18	Мин. 26.59 0.01 0.01 0.01 45.04 0.01 0.01 0.01	Макс. 34.38 9.81 5.92 9.27 65.88 0.01 0.01 2.09
$\begin{array}{c} Zrn-\pi op\varphi \\ SiO_2 \\ P_2O_5 \\ Fe_2O_3 \\ Y_2O_3 \\ ZrO_2 \\ Sm_2O_3 \\ Gd_2O_3 \\ Oy_2O_3 \\ Er_2O_3 \end{array}$	Сред. 33.13 0.01 0.42 0.01 65.67 0.01 0.01 0.01 0.01	Мин. 31.87 0.01 0.01 0.01 60.46 0.01 0.01 0.01 0.01	Макс. 36.62 0.01 1.71 0.01 67.40 0.01 0.01 0.01 0.01	Zm-Znw_изм SiO ₂ P ₂ O ₅ Fe ₂ O ₃ Y ₂ O ₃ ZrO ₂ Sm ₂ O ₃ Gd ₂ O ₃ Dy ₂ O ₃ Er ₂ O ₃	Сред. 32.56 0.48 1.06 0.58 58.18 0.01 0.01 0.18 0.14	Мин. 26.59 0.01 0.01 45.04 0.01 0.01 0.01 0.01	Макс. 34.38 9.81 5.92 9.27 65.88 0.01 0.01 2.09 1.58
$\begin{array}{c} Zrn - \pi op \varphi \\ SiO_2 \\ P_2O_5 \\ Fe_2O_3 \\ Y_2O_3 \\ ZrO_2 \\ Sm_2O_3 \\ Gd_2O_3 \\ Dy_2O_3 \\ Er_2O_3 \\ Fr_2O_3 \\ Yb_2O_3 \end{array}$	Сред. 33.13 0.01 0.42 0.01 65.67 0.01 0.01 0.01 0.01 0.01	Мин. 31.87 0.01 0.01 60.46 0.01 0.01 0.01 0.01 0.01	Макс. 36.62 0.01 1.71 0.01 67.40 0.01 0.01 0.01 0.01 0.01	Zm-Znw_изм SiO ₂ P ₂ O ₅ Fe ₂ O ₃ Y ₂ O ₃ ZrO ₂ Sm ₂ O ₃ Gd ₂ O ₃ Dy ₂ O ₃ Er ₂ O ₃ Yb ₂ O ₃	Сред. 32.56 0.48 1.06 0.58 58.18 0.01 0.01 0.18 0.14 0.44	Мин. 26.59 0.01 0.01 45.04 0.01 0.01 0.01 0.01 0.01	Макс. 34.38 9.81 5.92 9.27 65.88 0.01 0.01 2.09 1.58 3.84
$\begin{array}{c} Zrn - \pi op \varphi \\ SiO_2 \\ P_2O_5 \\ Fe_2O_3 \\ Y_2O_3 \\ ZrO_2 \\ Sm_2O_3 \\ Gd_2O_3 \\ Oy_2O_3 \\ Er_2O_3 \\ Fr_2O_3 \\ Yb_2O_3 \\ HfO_2 \end{array}$	Сред. 33.13 0.01 0.42 0.01 65.67 0.01 0.01 0.01 0.01 0.01 0.36	Мин. 31.87 0.01 0.01 60.46 0.01 0.01 0.01 0.01 0.01 0.01	Макс. 36.62 0.01 1.71 0.01 67.40 0.01 0.01 0.01 0.01 0.01 1.45	Zm-Znw_изм SiO ₂ P ₂ O ₅ Fe ₂ O ₃ Y ₂ O ₃ ZrO ₂ Sm ₂ O ₃ Gd ₂ O ₃ Dy ₂ O ₃ Er ₂ O ₃ Yb ₂ O ₃ HfO ₂	Сред. 32.56 0.48 1.06 0.58 58.18 0.01 0.01 0.01 0.18 0.14 0.44 4.47	Мин. 26.59 0.01 0.01 45.04 0.01 0.01 0.01 0.01 0.01 0.08	Макс. 34.38 9.81 5.92 9.27 65.88 0.01 0.01 2.09 1.58 3.84 17.16
$\begin{array}{c} Zrn - \pi op \varphi \\ SiO_2 \\ P_2O_5 \\ Fe_2O_3 \\ Y_2O_3 \\ ZrO_2 \\ Sm_2O_3 \\ Gd_2O_3 \\ Gd_2O_3 \\ Dy_2O_3 \\ Er_2O_3 \\ Yb_2O_3 \\ HfO_2 \\ ThO_2 \end{array}$	Сред. 33.13 0.01 0.42 0.01 65.67 0.01 0.01 0.01 0.01 0.01 0.36 0.11	Мин. 31.87 0.01 0.01 0.01 60.46 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Макс. 36.62 0.01 1.71 0.01 67.40 0.01 0.01 0.01 0.01 0.01 1.45 0.94	Zm-Znw_изм SiO ₂ P ₂ O ₅ Fe ₂ O ₃ Y ₂ O ₃ ZrO ₂ Sm ₂ O ₃ Gd ₂ O ₃ Dy ₂ O ₃ Er ₂ O ₃ Yb ₂ O ₃ HfO ₂ ThO ₂	Сред. 32.56 0.48 1.06 0.58 58.18 0.01 0.01 0.18 0.14 0.44 4.47 0.54	Мин. 26.59 0.01 0.01 45.04 0.01 0.01 0.01 0.01 0.01 0.08 0.01	Макс. 34.38 9.81 5.92 9.27 65.88 0.01 0.01 2.09 1.58 3.84 17.16 3.96
$\begin{tabular}{ c c c c c } \hline Zrn-порф \\ \hline SiO_2 \\ \hline P_2O_5 \\ \hline Fe_2O_3 \\ \hline Y_2O_3 \\ \hline ZrO_2 \\ \hline Sm_2O_3 \\ \hline Gd_2O_3 \\ \hline Gd_2O_3 \\ \hline Dy_2O_3 \\ \hline Er_2O_3 \\ \hline Yb_2O_3 \\ \hline HfO_2 \\ \hline ThO_2 \\ \hline UO_2 \\ \hline UO_2 \end{tabular}$	Сред. 33.13 0.01 0.42 0.01 65.67 0.01 0.01 0.01 0.01 0.01 0.36 0.11 0.41	Мин. 31.87 0.01 0.01 0.01 60.46 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0	Макс. 36.62 0.01 1.71 0.01 67.40 0.01 0.01 0.01 0.01 0.01 1.45 0.94 2.20	Zm-Znw_изм SiO ₂ P ₂ O ₅ Fe ₂ O ₃ Y ₂ O ₃ ZrO ₂ Sm ₂ O ₃ Gd ₂ O ₃ Dy ₂ O ₃ Er ₂ O ₃ Er ₂ O ₃ HfO ₂ ThO ₂ UO ₂	Сред. 32.56 0.48 1.06 0.58 58.18 0.01 0.01 0.18 0.14 0.44 4.47 0.54 0.74	Мин. 26.59 0.01 0.01 45.04 0.01 0.01 0.01 0.01 0.01 0.08 0.01 0.01	Макс. 34.38 9.81 5.92 9.27 65.88 0.01 0.01 2.09 1.58 3.84 17.16 3.96 2.97
$\begin{array}{c} Zrn - \pi op \varphi \\ SiO_2 \\ P_2O_5 \\ Fe_2O_3 \\ Y_2O_3 \\ ZrO_2 \\ Sm_2O_3 \\ Gd_2O_3 \\ Dy_2O_3 \\ Er_2O_3 \\ Fr_2O_3 \\ Yb_2O_3 \\ HfO_2 \\ ThO_2 \\ UO_2 \\ CaO \end{array}$	Сред. 33.13 0.01 0.42 0.01 65.67 0.01 0.01 0.01 0.01 0.01 0.36 0.11 0.41 0.01	Мин. 31.87 0.01 0.01 0.01 60.46 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Макс. 36.62 0.01 1.71 0.01 67.40 0.01 0.01 0.01 0.01 0.01 1.45 0.94 2.20 0.01	Zm-Znw_изм SiO ₂ P ₂ O ₅ Fe ₂ O ₃ Y ₂ O ₃ ZrO ₂ Sm ₂ O ₃ Gd ₂ O ₃ Dy ₂ O ₃ Er ₂ O ₃ Fr ₂ O ₃ HfO ₂ ThO ₂ UO ₂ CaO	Сред. 32.56 0.48 1.06 0.58 58.18 0.01 0.01 0.18 0.14 0.44 4.47 0.54 0.74 0.18	Мин. 26.59 0.01 0.01 45.04 0.01 0.01 0.01 0.01 0.01 0.08 0.01 0.01	Макс. 34.38 9.81 5.92 9.27 65.88 0.01 0.01 2.09 1.58 3.84 17.16 3.96 2.97 1.40
$\begin{tabular}{ c c c c c } \hline Zrn-порф\\ \hline SiO_2\\ \hline P_2O_5\\ \hline Fe_2O_3\\ \hline Y_2O_3\\ \hline ZrO_2\\ Sm_2O_3\\ \hline Gd_2O_3\\ \hline Gd_2O_3\\ \hline Dy_2O_3\\ \hline Er_2O_3\\ \hline Yb_2O_3\\ \hline HfO_2\\ \hline ThO_2\\ \hline UO_2\\ \hline CaO\\ \hline Al_2O_3\\ \hline \end{array}$	Сред. 33.13 0.01 0.42 0.01 65.67 0.01 0.01 0.01 0.01 0.01 0.36 0.11 0.41 0.01 0.01 0.01	Мин. 31.87 0.01 0.01 0.01 60.46 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Макс. 36.62 0.01 1.71 0.01 67.40 0.01 0.01 0.01 0.01 1.45 0.94 2.20 0.01 0.01 0.01	Zm-Znw_изм SiO ₂ P ₂ O ₅ Fe ₂ O ₃ Y ₂ O ₃ ZrO ₂ Sm ₂ O ₃ Gd ₂ O ₃ Gd ₂ O ₃ Dy ₂ O ₃ Er ₂ O ₃ HfO ₂ ThO ₂ UO ₂ CaO Al ₂ O ₃	Сред. 32.56 0.48 1.06 0.58 58.18 0.01 0.01 0.14 0.14 0.44 4.47 0.54 0.74 0.74 0.18 0.36	Мин. 26.59 0.01 0.01 45.04 0.01 0.01 0.01 0.01 0.08 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Макс. 34.38 9.81 5.92 9.27 65.88 0.01 0.01 2.09 1.58 3.84 17.16 3.96 2.97 1.40 3.06
$\begin{array}{c} Zrn-nop\varphi\\ SiO_2\\ P_2O_5\\ Fe_2O_3\\ ZrO_2\\ Sm_2O_3\\ Gd_2O_3\\ Gd_2O_3\\ Dy_2O_3\\ Er_2O_3\\ Yb_2O_3\\ HfO_2\\ ThO_2\\ UO_2\\ CaO\\ Al_2O_3\\ K_2O\\ \end{array}$	Сред. 33.13 0.01 0.42 0.01 65.67 0.01 0.01 0.01 0.01 0.36 0.11 0.41 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Мин. 31.87 0.01 0.01 0.01 60.46 0.01 0.0	Макс. 36.62 0.01 1.71 0.01 67.40 0.01 0.01 0.01 0.01 1.45 0.94 2.20 0.01 0.01 0.01 0.01 0.01 0.01	Zm-Znw_изм SiO ₂ P ₂ O ₅ Fe ₂ O ₃ Y ₂ O ₃ ZrO ₂ Sm ₂ O ₃ Gd ₂ O ₃ Dy ₂ O ₃ Er ₂ O ₃ HfO ₂ ThO ₂ UO ₂ CaO Al ₂ O ₃ K ₂ O	Сред. 32.56 0.48 1.06 0.58 58.18 0.01 0.01 0.18 0.14 0.44 4.47 0.54 0.74 0.74 0.18 0.36 0.05	Мин. 26.59 0.01 0.01 45.04 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0	Макс. 34.38 9.81 5.92 9.27 65.88 0.01 0.01 2.09 1.58 3.84 17.16 3.96 2.97 1.40 3.06 0.93
$\begin{tabular}{ c c c c c } \hline Zrn-порф \\ \hline SiO_2 \\ \hline P_2O_5 \\ \hline Fe_2O_3 \\ \hline Y_2O_3 \\ \hline ZrO_2 \\ \hline Sm_2O_3 \\ \hline Gd_2O_3 \\ \hline Dy_2O_3 \\ \hline Er_2O_3 \\ \hline Dy_2O_3 \\ \hline Er_2O_3 \\ \hline HfO_2 \\ \hline ThO_2 \\ \hline UO_2 \\ \hline CaO \\ \hline Al_2O_3 \\ \hline K_2O \\ \hline Bi_2O_3 \\ \hline \end{tabular}$	Сред. 33.13 0.01 0.42 0.01 65.67 0.01 0.01 0.01 0.01 0.36 0.11 0.41 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Мин. 31.87 0.01 0.01 0.01 60.46 0.01 0.0	Макс. 36.62 0.01 1.71 0.01 67.40 0.01 0.01 0.01 0.01 1.45 0.94 2.20 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	$\begin{tabular}{ c c c c } \hline Zm-Znw_{IJ3M} & SiO_2 & \\ \hline P_2O_5 & \\ \hline P_2O_5 & \\ \hline P_2O_3 & \\ \hline P_2O_3 & \\ \hline Sm_2O_3 & \\ \hline CaO_2 & \\ \hline Sm_2O_3 & \\ \hline Dy_2O_3 & \\ \hline Dy_2O_3 & \\ \hline Dy_2O_3 & \\ \hline Er_2O_3 & \\ \hline P_2O_3 & \\ \hline HfO_2 & \\ \hline UO_2 & \\ \hline CaO & \\ \hline Al_2O_3 & \\ \hline K_2O & \\ \hline Bi_2O_3 & \\ \hline \end{tabular}$	Сред. 32.56 0.48 1.06 0.58 58.18 0.01 0.01 0.18 0.14 0.44 4.47 0.54 0.74 0.74 0.18 0.36 0.05 0.10	Мин. 26.59 0.01 0.01 45.04 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0	Макс. 34.38 9.81 5.92 9.27 65.88 0.01 0.01 2.09 1.58 3.84 17.16 3.96 2.97 1.40 3.06 0.93 3.62

Химический состав цирконов в гранитоидах Верхнеурмийского массива (мас. %)

Примечание. Типы цирконов описаны в тексте.

Рис. 2. Различие состава цирконов в биотитовых (1) и циннвальдитовых (2) гранитах Верхнеурмийского массива.

Генетическая интерпретация данных РЭМ и ЭКА. Эволюционный кристалломорфологический анализ показал контрастное различие морфологии цирконов из биотитовых (Zrn-Bt) и шиннвальдитовых (Zrn-Znw) гранитов. Практически непрерывный «шток» основных морфотипов (I.A. = 700, I.T. = 300-800 °С) характерен для потенциально рудоносных гранитов субщелочно-лейкогранитовой формации. Кристаллизация биотитовых гранитов проходила в маловодных условиях при достаточно высоких температурах (900 °C для гранит-порфира, 850 °С для микро-, крупно- и среднезернистых биотитовых гранитов). Широкий диапазон морфоти-

пов циркона по оси I.А. свидетельствует о гетерогенности материнского расплава. Формирование редкометальных циннвальдитовых гранитов связано с флюидонасыщенным расплавом, имевшим температуру 750–650 °C, и завершалось уже в гидротермальных условиях.

Сравнительно более низкая температура образования циннвальдитового гранита косвенно подтверждает возможность участия в процессе фторидных комплексов. Перерыв в вертикальном температурном тренде распределения морфотипов циркона отражает, вероятно, наложение на закристаллизованные породы олово-, литий- и фторсодержащих флюидов, отделившихся в процессе эманационной дифференциации. Низкие скорости кристаллизации биотитовых гранитов обусловили формирование однородных цирконов, в то время как результатом быстрой кристаллизации литий-фтористых гранитов явилось образование пористых скелетных форм циркона.

Сетчатое строение зерен Zrn-Znw может быть обусловлено их частичным растворением вследствие быстрой смены условий роста кристалла. Характерная для цирконов Zrn-Znw сетка трещин гетерометрии возникает в результате разгрузки внутренних напряжений кристаллической решетки, осложненной примесями и дефектами. Эволюция состава магмы при непрерывном росте циркона оставила свой отпечаток в виде осцилляторной зональности Zrn-Bt, выявленной в режиме катодолюминесценции. Цирконы Zrn-Znw обладают более грубой зональностью, что говорит о менее стабильных условиях роста кристаллов при быстром охлаждении материнского расплава и нарушении регулярности решетки вследствие изоморфизма и формирования микроминералов-узников.

Особенности химического состава цирконов. Для цирконов Верхнеурмийского плутона характерна изоморфная примесь Fe (0.4–1.0). Вероятный механизм изоморфного замещения: Fe²⁺ + 3(Y,REE)³⁺ + P⁵⁺ = 3Zr⁴⁺ + Si⁴⁺; Fe²⁺ + 4(Y,REE)³⁺ + $P^{5+} = 4Zr^{4+} + Si^{4+}$. [Hoskin, Schaltegger, 2004]. Цирконы биотитовых гранитов ($Zr_{0.97}Fe_{0.02}U_{0.01}$)Si_{0.99}O₄ свободны от примесей, а цирконы циннвальдитовых гранитов – ($Zr_{0.65}U_{0.12}Th_{0.09}Hf_{0.04}Fe_{0.02}$)Si_{0.99}O₄ – содержат повышенные концентрации редких элементов: Hf, Th, U, REE, особенно в периферических частях зерен. Наиболее контрастным оказалось различие цирконов по содержанию гафния. Отношение Zr/Hf в цирконах циннвальдитовых и биотитовых гранитов составляет соответственно 19 и 58.

«Обычный» Zrn-Znw – единственный подтип циркона, который концентрирует тяжелые редкие земли: Sm и Gd. Таким образом, Σ HREE / Σ LREE = 18.35, является еще одним подтверждением существования постмагматических гидротермальных изменений, которым подвергались цирконы Zrn-Znw.

Статистический анализ данных элементного состава цирконов методом главных компонент позволил выделить три значимых фактора корреляции элементов: фактор истинного изоморфизма (36.3 %), фактор микровключений минералов-узников (17.6 %), фактор кластеризации вследствие эндокриптии (9.9 %).

Присутствие примесей редких земель особенно характерно для «обычных» Zrn-Znw. Значительное преобладание REE Y-группы над Се-группой, связано с тем, что на начальных этапах кристаллизации часть редких земель (преимущественно, цериевых) в качестве изоморфной примеси входило в состав плагиоклазов, а элементы Се-группы из остаточных расплавов образовывали собственный минерал – алланит. Тогда как элементы Y-группы на начальных этапах входили в состав роговой обманки. В остаточных расплавах элементы Y-группы входили в качестве изоморфной примеси в состав циркона Zrn-Znw.

Объяснена и учтена некорректность однозначной связи аномальных содержаний U, Th, Hf, Y, REE с изоморфизмом: в цирконах Zrn-Znw выявлено наличие минералов-узников изоструктурных с цирконом.

Таким образом, в составе гранитов Баджальского района установлены два типа циркона. Первый тип Zrn-Bt включает типичные магматические цирконы, характерные для пород начальных членов редкометальных гранитоидных серий – гранодиоритов и нормальных гранитов. Свойства цирконов второго типа Zrn-Znw позволяют связывать их генетически с редкометальными гранитами субщелочно-щелочногранитовых формаций – литий-фтористыми гранитами [Марин, 2004]. Нf-содержащий циркон второго типа сформировался во флюидонасыщенном расплаве и на поздних стадиях роста подвергался интенсивному гидротермальному воздействию. Полученный комплекс типоморфных признаков циркона гранитоидов позволяет проводить петрологические корреляции и выделять в Приамурье ранее не выявленные редкометальные граниты литий-фтористого типа.

Литература

Бродская Р. Л. Марина Е. Ю., Шнай Г. К. и др. Реставрация условий и кинетики становления гранитов редкометальных формаций по кристалломорфологии акцессорного циркона // Записки ВМО. 1986. № 1. С. 50–62.

Григорьев С. И. Особенности вещественного состава позднемезозойских гранитоидов Баджальского и Комсомольского рудных районов, их петрогенезис и связь с оруденением // Региональная геология и металлогения. 1997. № 6. С. 103–115.

Кривовичев В. Г., Брусницын А. И., Зайцев А. Н. Абсолютный возраст и геохимические особенности гранитов Верхнеурмийского массива (Приамурье, Дальний Восток) // Геохимия. 1996. № 2. С. 106–111.

Марин Ю. Б. Акцессорные минералы гранитоидных серий оловянных и молибденовых провинций // Записки РМО. 2004. № 6. С. 1–7.

Hoskin P. W. O., Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis // Zircon: Reviews in Mineralogy and Geochemistry. 2003. Vol. 53. № 1. P. 27–62.