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For years the deciphering of twins has been practically ignored by structural crystallographers and the presence of twinning has been considered as an almost insuperable obstacle on the route leading to the solution of a crystal structure. Presently, instead, one sees an unexpected “re-discovery” of twins in the field of structural crystallography. In fact, availability of area detectors and, even more, development of dedicated and powerful software make possible nowadays to detect twinning from a diffraction pattern and to recover the contribution of one individual crystal only. Often, however, because of the increasing automation in the process of collecting and interpreting diffraction data, the crystal solution of a twinned crystal is obtained just using the software facilities as a "black box". Following the analysis of twins recently reported by [1] and other papers quoted in the references, this contribution intends to discuss the influence of twinning on a diffraction pattern.
Friedel [2] showed that the necessary conditions to form a twin depend on the symmetry relationships that occur between the point group of the crystal and the point group of either the lattice or a sublattice. In general, it is found that a (pseudo)symmetry element belonging to the lattice or a sublattice point group but not to the crystal point group can act as a twin element. The lattice conditions are actually necessary but not sufficient, the real occurrence of a twin depending also on the degree of matching of the crystal structure at the interface between the individuals.
Twinning by (pseudo)merohedry is the oriented association of two or more individuals (crystals) that are related by a (pseudo)symmetry element (twin element) belonging to the point group of the lattice, but not to the point group of the individual. The twin operation overlaps the lattices of the individuals and the common lattice is the twin lattice with its twin cell. In the presence of a sublattice displaying (pseudo)symmetry other than that of the crystal lattice, a (pseudo)symmetry element belonging to the sublattice point group but not to the crystal point group can act as twin element generating a twin by reticular (pseudo)merohedry.

Because of the overlapping of the individual lattices, the diffraction pattern of the twin corresponds to the overlapping of the diffraction patterns of the individuals. Concerning geometry, the degree of overlapping can be as follows: (i) exact for all diffractions (i.e. nodes of the reciprocal lattice) in twinning by merohedry; (ii) approximate for all diffractions in twinning by pseudomerohedry; (iii) exact for a fraction 1/n of diffractions in twinning by reticular merohedry; (iv) approximate for a fraction 1/n in twinning by reticular pseudomerohedry. The integer n is known as twin index. Twins by (pseudo)merohedry are subdivided in Class I (Laue point group = lattice point group) and Class II (Laue point group ≠ lattice point group) [3].
In twins by reticular merohedry and Class II merohedry non equivalent diffractions are overlapped by the twin operation; consequently, the crystal structure cannot be solved without knowing the twin law through which a detwinning procedure allows to recover the diffractions due to an individual of the twin. The perfect overlapping of diffractions makes particularly difficult the discovering of twinning which instead can at least be suspected when split diffractions are systematically present. Main indicators of diffraction patterns generated by a twin are: (i) typical statistical distribution of intensities; (ii) non-space group systematic absences that arise from the necessary non-primitivity of the twin cell in twins by reticular merohedry. 
In principle, the individual diffraction intensities can be recovered from the twin diffraction pattern by applying the following procedure where: v1, I(hkl)1 and I(hkl)2 are the fractional volume of individual 1 and the intensity diffracted by individuals 1 and 2 (same hkl planes), respectively; I(K'H'L') and I(K”H”L”) are two intensities related by the twin operation and measured on the twin diffraction pattern; the indices HKL refer to the reference system used to index the twin diffraction pattern, i.e. the twin cell. The following system of two equations holds:
I(K'H'L') = v1I(hkl)1+ (1- v1)I(hkl)2;
I(K"H"L") = (1 - v1)I(hkl)1+ v1I(hkl)2

(1).

Except when v1 = 0.5, the system (1) can be solved for the intensities diffracted by each individual:

I(hkl)1 = I(K'H'L') + [v1/(1 – 2 v1)][I(K'H'L') - I(K"H"L")]

I(hkl)2 = I(K"H"L") - [v1/(1 – 2 v1)][I(K'H'L') - I(K"H"L")]


(2).

Rarer, but conceptually important cases of twinning have been described in recent years as result of a systematic analysis of the reticular basis of twinning: allotwinning, oriented crystal association of polytypes [4]; plesiotwinning, oriented associations based on a large coincidence-site lattice [5]; metric merohedry, the metric of a cell is higher than required by the crystal point group [6]; reticular polyholohedry, presence of differently oriented lattice and sublattices with the same point group [7]; hybrid twinning, a cooperative type of oriented crystal association [8].
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